MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnrm2 Structured version   Visualization version   GIF version

Theorem isnrm2 21968
Description: An alternate characterization of normality. This is the important property in the proof of Urysohn's lemma. (Contributed by Jeff Hankins, 1-Feb-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
isnrm2 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))))
Distinct variable group:   𝑐,𝑑,𝑜,𝐽

Proof of Theorem isnrm2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nrmtop 21946 . . 3 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
2 nrmsep2 21966 . . . . . 6 ((𝐽 ∈ Nrm ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽) ∧ (𝑐𝑑) = ∅)) → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))
323exp2 1350 . . . . 5 (𝐽 ∈ Nrm → (𝑐 ∈ (Clsd‘𝐽) → (𝑑 ∈ (Clsd‘𝐽) → ((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)))))
43impd 413 . . . 4 (𝐽 ∈ Nrm → ((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽)) → ((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))))
54ralrimivv 3192 . . 3 (𝐽 ∈ Nrm → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)))
61, 5jca 514 . 2 (𝐽 ∈ Nrm → (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))))
7 simpl 485 . . 3 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))) → 𝐽 ∈ Top)
8 eqid 2823 . . . . . . . . . . 11 𝐽 = 𝐽
98opncld 21643 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
109adantr 483 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
11 ineq2 4185 . . . . . . . . . . . 12 (𝑑 = ( 𝐽𝑥) → (𝑐𝑑) = (𝑐 ∩ ( 𝐽𝑥)))
1211eqeq1d 2825 . . . . . . . . . . 11 (𝑑 = ( 𝐽𝑥) → ((𝑐𝑑) = ∅ ↔ (𝑐 ∩ ( 𝐽𝑥)) = ∅))
13 ineq2 4185 . . . . . . . . . . . . . 14 (𝑑 = ( 𝐽𝑥) → (((cls‘𝐽)‘𝑜) ∩ 𝑑) = (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)))
1413eqeq1d 2825 . . . . . . . . . . . . 13 (𝑑 = ( 𝐽𝑥) → ((((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅ ↔ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅))
1514anbi2d 630 . . . . . . . . . . . 12 (𝑑 = ( 𝐽𝑥) → ((𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅) ↔ (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅)))
1615rexbidv 3299 . . . . . . . . . . 11 (𝑑 = ( 𝐽𝑥) → (∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅) ↔ ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅)))
1712, 16imbi12d 347 . . . . . . . . . 10 (𝑑 = ( 𝐽𝑥) → (((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) ↔ ((𝑐 ∩ ( 𝐽𝑥)) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅))))
1817rspcv 3620 . . . . . . . . 9 (( 𝐽𝑥) ∈ (Clsd‘𝐽) → (∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ((𝑐 ∩ ( 𝐽𝑥)) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅))))
1910, 18syl 17 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ((𝑐 ∩ ( 𝐽𝑥)) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅))))
20 inssdif0 4331 . . . . . . . . . 10 ((𝑐 𝐽) ⊆ 𝑥 ↔ (𝑐 ∩ ( 𝐽𝑥)) = ∅)
218cldss 21639 . . . . . . . . . . . . 13 (𝑐 ∈ (Clsd‘𝐽) → 𝑐 𝐽)
2221adantl 484 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → 𝑐 𝐽)
23 df-ss 3954 . . . . . . . . . . . 12 (𝑐 𝐽 ↔ (𝑐 𝐽) = 𝑐)
2422, 23sylib 220 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (𝑐 𝐽) = 𝑐)
2524sseq1d 4000 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → ((𝑐 𝐽) ⊆ 𝑥𝑐𝑥))
2620, 25syl5bbr 287 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → ((𝑐 ∩ ( 𝐽𝑥)) = ∅ ↔ 𝑐𝑥))
27 inssdif0 4331 . . . . . . . . . . . 12 ((((cls‘𝐽)‘𝑜) ∩ 𝐽) ⊆ 𝑥 ↔ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅)
28 simpll 765 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
29 elssuni 4870 . . . . . . . . . . . . . . 15 (𝑜𝐽𝑜 𝐽)
308clsss3 21669 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝑜 𝐽) → ((cls‘𝐽)‘𝑜) ⊆ 𝐽)
3128, 29, 30syl2an 597 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜𝐽) → ((cls‘𝐽)‘𝑜) ⊆ 𝐽)
32 df-ss 3954 . . . . . . . . . . . . . 14 (((cls‘𝐽)‘𝑜) ⊆ 𝐽 ↔ (((cls‘𝐽)‘𝑜) ∩ 𝐽) = ((cls‘𝐽)‘𝑜))
3331, 32sylib 220 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜𝐽) → (((cls‘𝐽)‘𝑜) ∩ 𝐽) = ((cls‘𝐽)‘𝑜))
3433sseq1d 4000 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜𝐽) → ((((cls‘𝐽)‘𝑜) ∩ 𝐽) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))
3527, 34syl5bbr 287 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜𝐽) → ((((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅ ↔ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))
3635anbi2d 630 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜𝐽) → ((𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅) ↔ (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
3736rexbidva 3298 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅) ↔ ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
3826, 37imbi12d 347 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (((𝑐 ∩ ( 𝐽𝑥)) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅)) ↔ (𝑐𝑥 → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))))
3919, 38sylibd 241 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → (𝑐𝑥 → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))))
4039ralimdva 3179 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ∀𝑐 ∈ (Clsd‘𝐽)(𝑐𝑥 → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))))
41 elin 4171 . . . . . . . . . 10 (𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥) ↔ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐 ∈ 𝒫 𝑥))
42 velpw 4546 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 𝑥𝑐𝑥)
4342anbi2i 624 . . . . . . . . . 10 ((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐 ∈ 𝒫 𝑥) ↔ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐𝑥))
4441, 43bitri 277 . . . . . . . . 9 (𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥) ↔ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐𝑥))
4544imbi1i 352 . . . . . . . 8 ((𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥) → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)) ↔ ((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐𝑥) → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
46 impexp 453 . . . . . . . 8 (((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐𝑥) → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)) ↔ (𝑐 ∈ (Clsd‘𝐽) → (𝑐𝑥 → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))))
4745, 46bitri 277 . . . . . . 7 ((𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥) → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)) ↔ (𝑐 ∈ (Clsd‘𝐽) → (𝑐𝑥 → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))))
4847ralbii2 3165 . . . . . 6 (∀𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥) ↔ ∀𝑐 ∈ (Clsd‘𝐽)(𝑐𝑥 → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
4940, 48syl6ibr 254 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ∀𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
5049ralrimdva 3191 . . . 4 (𝐽 ∈ Top → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ∀𝑥𝐽𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
5150imp 409 . . 3 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))) → ∀𝑥𝐽𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))
52 isnrm 21945 . . 3 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
537, 51, 52sylanbrc 585 . 2 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))) → 𝐽 ∈ Nrm)
546, 53impbii 211 1 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  cdif 3935  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541   cuni 4840  cfv 6357  Topctop 21503  Clsdccld 21626  clsccl 21628  Nrmcnrm 21920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-top 21504  df-cld 21629  df-cls 21631  df-nrm 21927
This theorem is referenced by:  isnrm3  21969
  Copyright terms: Public domain W3C validator