Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnumbasgrplem3 Structured version   Visualization version   GIF version

Theorem isnumbasgrplem3 37195
Description: Every nonempty numerable set can be given the structure of an Abelian group, either a finite cyclic group or a vector space over Z/2Z. (Contributed by Stefan O'Rear, 10-Jul-2015.)
Assertion
Ref Expression
isnumbasgrplem3 ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel))

Proof of Theorem isnumbasgrplem3
StepHypRef Expression
1 hashcl 13103 . . . . . 6 (𝑆 ∈ Fin → (#‘𝑆) ∈ ℕ0)
21adantl 482 . . . . 5 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (#‘𝑆) ∈ ℕ0)
3 eqid 2621 . . . . . 6 (ℤ/nℤ‘(#‘𝑆)) = (ℤ/nℤ‘(#‘𝑆))
43zncrng 19833 . . . . 5 ((#‘𝑆) ∈ ℕ0 → (ℤ/nℤ‘(#‘𝑆)) ∈ CRing)
5 crngring 18498 . . . . 5 ((ℤ/nℤ‘(#‘𝑆)) ∈ CRing → (ℤ/nℤ‘(#‘𝑆)) ∈ Ring)
6 ringabl 18520 . . . . 5 ((ℤ/nℤ‘(#‘𝑆)) ∈ Ring → (ℤ/nℤ‘(#‘𝑆)) ∈ Abel)
72, 4, 5, 64syl 19 . . . 4 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (ℤ/nℤ‘(#‘𝑆)) ∈ Abel)
8 hashnncl 13113 . . . . . . . 8 (𝑆 ∈ Fin → ((#‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅))
98biimparc 504 . . . . . . 7 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (#‘𝑆) ∈ ℕ)
10 eqid 2621 . . . . . . . 8 (Base‘(ℤ/nℤ‘(#‘𝑆))) = (Base‘(ℤ/nℤ‘(#‘𝑆)))
113, 10znhash 19847 . . . . . . 7 ((#‘𝑆) ∈ ℕ → (#‘(Base‘(ℤ/nℤ‘(#‘𝑆)))) = (#‘𝑆))
129, 11syl 17 . . . . . 6 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (#‘(Base‘(ℤ/nℤ‘(#‘𝑆)))) = (#‘𝑆))
1312eqcomd 2627 . . . . 5 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (#‘𝑆) = (#‘(Base‘(ℤ/nℤ‘(#‘𝑆)))))
14 simpr 477 . . . . . 6 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ∈ Fin)
153, 10znfi 19848 . . . . . . 7 ((#‘𝑆) ∈ ℕ → (Base‘(ℤ/nℤ‘(#‘𝑆))) ∈ Fin)
169, 15syl 17 . . . . . 6 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (Base‘(ℤ/nℤ‘(#‘𝑆))) ∈ Fin)
17 hashen 13091 . . . . . 6 ((𝑆 ∈ Fin ∧ (Base‘(ℤ/nℤ‘(#‘𝑆))) ∈ Fin) → ((#‘𝑆) = (#‘(Base‘(ℤ/nℤ‘(#‘𝑆)))) ↔ 𝑆 ≈ (Base‘(ℤ/nℤ‘(#‘𝑆)))))
1814, 16, 17syl2anc 692 . . . . 5 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → ((#‘𝑆) = (#‘(Base‘(ℤ/nℤ‘(#‘𝑆)))) ↔ 𝑆 ≈ (Base‘(ℤ/nℤ‘(#‘𝑆)))))
1913, 18mpbid 222 . . . 4 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ≈ (Base‘(ℤ/nℤ‘(#‘𝑆))))
2010isnumbasgrplem1 37191 . . . 4 (((ℤ/nℤ‘(#‘𝑆)) ∈ Abel ∧ 𝑆 ≈ (Base‘(ℤ/nℤ‘(#‘𝑆)))) → 𝑆 ∈ (Base “ Abel))
217, 19, 20syl2anc 692 . . 3 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel))
2221adantll 749 . 2 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel))
23 2nn0 11269 . . . . . . 7 2 ∈ ℕ0
24 eqid 2621 . . . . . . . 8 (ℤ/nℤ‘2) = (ℤ/nℤ‘2)
2524zncrng 19833 . . . . . . 7 (2 ∈ ℕ0 → (ℤ/nℤ‘2) ∈ CRing)
26 crngring 18498 . . . . . . 7 ((ℤ/nℤ‘2) ∈ CRing → (ℤ/nℤ‘2) ∈ Ring)
2723, 25, 26mp2b 10 . . . . . 6 (ℤ/nℤ‘2) ∈ Ring
28 eqid 2621 . . . . . . 7 ((ℤ/nℤ‘2) freeLMod 𝑆) = ((ℤ/nℤ‘2) freeLMod 𝑆)
2928frlmlmod 20033 . . . . . 6 (((ℤ/nℤ‘2) ∈ Ring ∧ 𝑆 ∈ dom card) → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod)
3027, 29mpan 705 . . . . 5 (𝑆 ∈ dom card → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod)
31 lmodabl 18850 . . . . 5 (((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel)
3230, 31syl 17 . . . 4 (𝑆 ∈ dom card → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel)
3332ad2antrr 761 . . 3 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel)
34 eqid 2621 . . . . . . 7 (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) = (Base‘((ℤ/nℤ‘2) freeLMod 𝑆))
3524, 28, 34frlmpwfi 37187 . . . . . 6 (𝑆 ∈ dom card → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin))
3635ad2antrr 761 . . . . 5 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin))
37 simpll 789 . . . . . 6 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ∈ dom card)
38 numinfctb 37193 . . . . . . 7 ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆)
3938adantlr 750 . . . . . 6 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆)
40 infpwfien 8845 . . . . . 6 ((𝑆 ∈ dom card ∧ ω ≼ 𝑆) → (𝒫 𝑆 ∩ Fin) ≈ 𝑆)
4137, 39, 40syl2anc 692 . . . . 5 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (𝒫 𝑆 ∩ Fin) ≈ 𝑆)
42 entr 7968 . . . . 5 (((Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin) ∧ (𝒫 𝑆 ∩ Fin) ≈ 𝑆) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ 𝑆)
4336, 41, 42syl2anc 692 . . . 4 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ 𝑆)
4443ensymd 7967 . . 3 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ≈ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)))
4534isnumbasgrplem1 37191 . . 3 ((((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel ∧ 𝑆 ≈ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆))) → 𝑆 ∈ (Base “ Abel))
4633, 44, 45syl2anc 692 . 2 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel))
4722, 46pm2.61dan 831 1 ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  cin 3559  c0 3897  𝒫 cpw 4136   class class class wbr 4623  dom cdm 5084  cima 5087  cfv 5857  (class class class)co 6615  ωcom 7027  cen 7912  cdom 7913  Fincfn 7915  cardccrd 8721  cn 10980  2c2 11030  0cn0 11252  #chash 13073  Basecbs 15800  Abelcabl 18134  Ringcrg 18487  CRingccrg 18488  LModclmod 18803  ℤ/nczn 19791   freeLMod cfrlm 20030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-tpos 7312  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-seqom 7503  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-ec 7704  df-qs 7708  df-map 7819  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-acn 8728  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-rp 11793  df-fz 12285  df-fzo 12423  df-fl 12549  df-mod 12625  df-seq 12758  df-hash 13074  df-dvds 14927  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-hom 15906  df-cco 15907  df-0g 16042  df-prds 16048  df-pws 16050  df-imas 16108  df-qus 16109  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-mhm 17275  df-grp 17365  df-minusg 17366  df-sbg 17367  df-mulg 17481  df-subg 17531  df-nsg 17532  df-eqg 17533  df-ghm 17598  df-gim 17641  df-gic 17642  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-ring 18489  df-cring 18490  df-oppr 18563  df-dvdsr 18581  df-rnghom 18655  df-subrg 18718  df-lmod 18805  df-lss 18873  df-lsp 18912  df-sra 19112  df-rgmod 19113  df-lidl 19114  df-rsp 19115  df-2idl 19172  df-cnfld 19687  df-zring 19759  df-zrh 19792  df-zn 19795  df-dsmm 20016  df-frlm 20031
This theorem is referenced by:  isnumbasabl  37196  dfacbasgrp  37198
  Copyright terms: Public domain W3C validator