MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoas Structured version   Visualization version   GIF version

Theorem isoas 25964
Description: Congruence theorem for isocele triangles: if two angles of a triangle are congruent, then the corresponding sides also are. (Contributed by Thierry Arnoux, 5-Oct-2020.)
Hypotheses
Ref Expression
isoas.p 𝑃 = (Base‘𝐺)
isoas.m = (dist‘𝐺)
isoas.i 𝐼 = (Itv‘𝐺)
isoas.l 𝐿 = (LineG‘𝐺)
isoas.g (𝜑𝐺 ∈ TarskiG)
isoas.a (𝜑𝐴𝑃)
isoas.b (𝜑𝐵𝑃)
isoas.c (𝜑𝐶𝑃)
isoas.1 (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
isoas.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐴𝐶𝐵”⟩)
Assertion
Ref Expression
isoas (𝜑 → (𝐴 𝐵) = (𝐴 𝐶))

Proof of Theorem isoas
StepHypRef Expression
1 isoas.p . 2 𝑃 = (Base‘𝐺)
2 isoas.m . 2 = (dist‘𝐺)
3 isoas.i . 2 𝐼 = (Itv‘𝐺)
4 eqid 2760 . 2 (cgrG‘𝐺) = (cgrG‘𝐺)
5 isoas.g . 2 (𝜑𝐺 ∈ TarskiG)
6 isoas.b . 2 (𝜑𝐵𝑃)
7 isoas.c . 2 (𝜑𝐶𝑃)
8 isoas.a . 2 (𝜑𝐴𝑃)
9 isoas.l . . 3 𝐿 = (LineG‘𝐺)
10 isoas.1 . . . 4 (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
111, 9, 3, 5, 8, 6, 7, 10ncolrot1 25677 . . 3 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
121, 2, 3, 5, 6, 7axtgcgrrflx 25581 . . 3 (𝜑 → (𝐵 𝐶) = (𝐶 𝐵))
13 eqid 2760 . . . 4 (hlG‘𝐺) = (hlG‘𝐺)
14 isoas.2 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐴𝐶𝐵”⟩)
151, 3, 13, 5, 8, 6, 7, 8, 7, 6, 14cgrane2 25925 . . . . . 6 (𝜑𝐵𝐶)
161, 3, 9, 5, 8, 6, 7, 11ncolne2 25741 . . . . . . 7 (𝜑𝐴𝐶)
1716necomd 2987 . . . . . 6 (𝜑𝐶𝐴)
181, 3, 5, 13, 6, 7, 8, 15, 17cgraswap 25932 . . . . 5 (𝜑 → ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐴𝐶𝐵”⟩)
191, 3, 5, 13, 8, 6, 7, 8, 7, 6, 14cgracom 25934 . . . . 5 (𝜑 → ⟨“𝐴𝐶𝐵”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
201, 3, 5, 13, 6, 7, 8, 8, 7, 6, 18, 8, 6, 7, 19cgratr 25935 . . . 4 (𝜑 → ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
211, 3, 9, 5, 8, 6, 7, 11ncolne1 25740 . . . . 5 (𝜑𝐴𝐵)
221, 3, 5, 13, 8, 6, 7, 21, 15cgraswap 25932 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐶𝐵𝐴”⟩)
231, 3, 5, 13, 6, 7, 8, 8, 6, 7, 20, 7, 6, 8, 22cgratr 25935 . . 3 (𝜑 → ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐶𝐵𝐴”⟩)
241, 2, 3, 5, 6, 7, 8, 7, 6, 8, 9, 11, 12, 23, 14tgasa 25960 . 2 (𝜑 → ⟨“𝐵𝐶𝐴”⟩(cgrG‘𝐺)⟨“𝐶𝐵𝐴”⟩)
251, 2, 3, 4, 5, 6, 7, 8, 7, 6, 8, 24cgr3simp3 25637 1 (𝜑 → (𝐴 𝐵) = (𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382   = wceq 1632  wcel 2139   class class class wbr 4804  cfv 6049  (class class class)co 6814  ⟨“cs3 13807  Basecbs 16079  distcds 16172  TarskiGcstrkg 25549  Itvcitv 25555  LineGclng 25556  cgrGccgrg 25625  hlGchlg 25715  cgrAccgra 25919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-xnn0 11576  df-z 11590  df-uz 11900  df-fz 12540  df-fzo 12680  df-hash 13332  df-word 13505  df-concat 13507  df-s1 13508  df-s2 13813  df-s3 13814  df-trkgc 25567  df-trkgb 25568  df-trkgcb 25569  df-trkgld 25571  df-trkg 25572  df-cgrg 25626  df-leg 25698  df-hlg 25716  df-mir 25768  df-rag 25809  df-perpg 25811  df-hpg 25870  df-mid 25886  df-lmi 25887  df-cgra 25920
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator