MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isocnv Structured version   Visualization version   GIF version

Theorem isocnv 6565
Description: Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isocnv (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))

Proof of Theorem isocnv
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ocnv 6136 . . . 4 (𝐻:𝐴1-1-onto𝐵𝐻:𝐵1-1-onto𝐴)
21adantr 481 . . 3 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → 𝐻:𝐵1-1-onto𝐴)
3 f1ocnvfv2 6518 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵𝑧𝐵) → (𝐻‘(𝐻𝑧)) = 𝑧)
43adantrr 752 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐵𝑤𝐵)) → (𝐻‘(𝐻𝑧)) = 𝑧)
5 f1ocnvfv2 6518 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵𝑤𝐵) → (𝐻‘(𝐻𝑤)) = 𝑤)
65adantrl 751 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐵𝑤𝐵)) → (𝐻‘(𝐻𝑤)) = 𝑤)
74, 6breq12d 4657 . . . . . 6 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ 𝑧𝑆𝑤))
87adantlr 750 . . . . 5 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ 𝑧𝑆𝑤))
9 f1of 6124 . . . . . . 7 (𝐻:𝐵1-1-onto𝐴𝐻:𝐵𝐴)
101, 9syl 17 . . . . . 6 (𝐻:𝐴1-1-onto𝐵𝐻:𝐵𝐴)
11 ffvelrn 6343 . . . . . . . . 9 ((𝐻:𝐵𝐴𝑧𝐵) → (𝐻𝑧) ∈ 𝐴)
12 ffvelrn 6343 . . . . . . . . 9 ((𝐻:𝐵𝐴𝑤𝐵) → (𝐻𝑤) ∈ 𝐴)
1311, 12anim12dan 881 . . . . . . . 8 ((𝐻:𝐵𝐴 ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻𝑧) ∈ 𝐴 ∧ (𝐻𝑤) ∈ 𝐴))
14 breq1 4647 . . . . . . . . . . 11 (𝑥 = (𝐻𝑧) → (𝑥𝑅𝑦 ↔ (𝐻𝑧)𝑅𝑦))
15 fveq2 6178 . . . . . . . . . . . 12 (𝑥 = (𝐻𝑧) → (𝐻𝑥) = (𝐻‘(𝐻𝑧)))
1615breq1d 4654 . . . . . . . . . . 11 (𝑥 = (𝐻𝑧) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻𝑦)))
1714, 16bibi12d 335 . . . . . . . . . 10 (𝑥 = (𝐻𝑧) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ((𝐻𝑧)𝑅𝑦 ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻𝑦))))
18 bicom 212 . . . . . . . . . 10 (((𝐻𝑧)𝑅𝑦 ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻𝑦)) ↔ ((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻𝑧)𝑅𝑦))
1917, 18syl6bb 276 . . . . . . . . 9 (𝑥 = (𝐻𝑧) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻𝑧)𝑅𝑦)))
20 fveq2 6178 . . . . . . . . . . 11 (𝑦 = (𝐻𝑤) → (𝐻𝑦) = (𝐻‘(𝐻𝑤)))
2120breq2d 4656 . . . . . . . . . 10 (𝑦 = (𝐻𝑤) → ((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤))))
22 breq2 4648 . . . . . . . . . 10 (𝑦 = (𝐻𝑤) → ((𝐻𝑧)𝑅𝑦 ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2321, 22bibi12d 335 . . . . . . . . 9 (𝑦 = (𝐻𝑤) → (((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻𝑧)𝑅𝑦) ↔ ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤))))
2419, 23rspc2va 3318 . . . . . . . 8 ((((𝐻𝑧) ∈ 𝐴 ∧ (𝐻𝑤) ∈ 𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2513, 24sylan 488 . . . . . . 7 (((𝐻:𝐵𝐴 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2625an32s 845 . . . . . 6 (((𝐻:𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2710, 26sylanl1 681 . . . . 5 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
288, 27bitr3d 270 . . . 4 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2928ralrimivva 2968 . . 3 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
302, 29jca 554 . 2 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → (𝐻:𝐵1-1-onto𝐴 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤))))
31 df-isom 5885 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
32 df-isom 5885 . 2 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) ↔ (𝐻:𝐵1-1-onto𝐴 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤))))
3330, 31, 323imtr4i 281 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wral 2909   class class class wbr 4644  ccnv 5103  wf 5872  1-1-ontowf1o 5875  cfv 5876   Isom wiso 5877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885
This theorem is referenced by:  isores1  6569  isofr  6577  isose  6578  isopo  6581  isoso  6583  weisoeq  6590  weisoeq2  6591  fnwelem  7277  oieu  8429  oemapwe  8576  cantnffval2  8577  wemapwe  8579  infxpenlem  8821  fpwwe2lem7  9443  fpwwe2lem9  9445  infrenegsup  10991  ltweuz  12743  fz1isolem  13228  ordthmeo  21586  relogiso  24325  erdsze2lem2  31160  fzisoeu  39327
  Copyright terms: Public domain W3C validator