![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isof1oopb | Structured version Visualization version GIF version |
Description: A function is a bijection iff it is an isomorphism regarding the universal class of ordered pairs as relations. (Contributed by AV, 9-May-2021.) |
Ref | Expression |
---|---|
isof1oopb | ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom (V × V), (V × V)(𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6239 | . . . . . . . . 9 ⊢ (𝐻‘𝑥) ∈ V | |
2 | fvex 6239 | . . . . . . . . 9 ⊢ (𝐻‘𝑦) ∈ V | |
3 | 1, 2 | opelvv 5200 | . . . . . . . 8 ⊢ 〈(𝐻‘𝑥), (𝐻‘𝑦)〉 ∈ (V × V) |
4 | df-br 4686 | . . . . . . . 8 ⊢ ((𝐻‘𝑥)(V × V)(𝐻‘𝑦) ↔ 〈(𝐻‘𝑥), (𝐻‘𝑦)〉 ∈ (V × V)) | |
5 | 3, 4 | mpbir 221 | . . . . . . 7 ⊢ (𝐻‘𝑥)(V × V)(𝐻‘𝑦) |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑥(V × V)𝑦 → (𝐻‘𝑥)(V × V)(𝐻‘𝑦)) |
7 | opelvvg 5199 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 〈𝑥, 𝑦〉 ∈ (V × V)) | |
8 | df-br 4686 | . . . . . . . 8 ⊢ (𝑥(V × V)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (V × V)) | |
9 | 7, 8 | sylibr 224 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥(V × V)𝑦) |
10 | 9 | a1d 25 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐻‘𝑥)(V × V)(𝐻‘𝑦) → 𝑥(V × V)𝑦)) |
11 | 6, 10 | impbid2 216 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦))) |
12 | 11 | adantl 481 | . . . 4 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦))) |
13 | 12 | ralrimivva 3000 | . . 3 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦))) |
14 | 13 | pm4.71i 665 | . 2 ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦)))) |
15 | df-isom 5935 | . 2 ⊢ (𝐻 Isom (V × V), (V × V)(𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦)))) | |
16 | 14, 15 | bitr4i 267 | 1 ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom (V × V), (V × V)(𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∈ wcel 2030 ∀wral 2941 Vcvv 3231 〈cop 4216 class class class wbr 4685 × cxp 5141 –1-1-onto→wf1o 5925 ‘cfv 5926 Isom wiso 5927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-xp 5149 df-iota 5889 df-fv 5934 df-isom 5935 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |