MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isopo Structured version   Visualization version   GIF version

Theorem isopo 6556
Description: An isomorphism preserves partial ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
isopo (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Po 𝐴𝑆 Po 𝐵))

Proof of Theorem isopo
StepHypRef Expression
1 isocnv 6540 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))
2 isopolem 6555 . . 3 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → (𝑅 Po 𝐴𝑆 Po 𝐵))
31, 2syl 17 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Po 𝐴𝑆 Po 𝐵))
4 isopolem 6555 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵𝑅 Po 𝐴))
53, 4impbid 202 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Po 𝐴𝑆 Po 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   Po wpo 4998  ccnv 5078   Isom wiso 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-id 4994  df-po 5000  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator