Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isores2 Structured version   Visualization version   GIF version

Theorem isores2 6698
 Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
isores2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵))

Proof of Theorem isores2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of 6250 . . . . . . . 8 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
2 ffvelrn 6472 . . . . . . . . . 10 ((𝐻:𝐴𝐵𝑥𝐴) → (𝐻𝑥) ∈ 𝐵)
32adantrr 755 . . . . . . . . 9 ((𝐻:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑥) ∈ 𝐵)
4 ffvelrn 6472 . . . . . . . . . 10 ((𝐻:𝐴𝐵𝑦𝐴) → (𝐻𝑦) ∈ 𝐵)
54adantrl 754 . . . . . . . . 9 ((𝐻:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑦) ∈ 𝐵)
6 brinxp 5290 . . . . . . . . 9 (((𝐻𝑥) ∈ 𝐵 ∧ (𝐻𝑦) ∈ 𝐵) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦)))
73, 5, 6syl2anc 696 . . . . . . . 8 ((𝐻:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦)))
81, 7sylan 489 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦)))
98anassrs 683 . . . . . 6 (((𝐻:𝐴1-1-onto𝐵𝑥𝐴) ∧ 𝑦𝐴) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦)))
109bibi2d 331 . . . . 5 (((𝐻:𝐴1-1-onto𝐵𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦))))
1110ralbidva 3087 . . . 4 ((𝐻:𝐴1-1-onto𝐵𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦))))
1211ralbidva 3087 . . 3 (𝐻:𝐴1-1-onto𝐵 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦))))
1312pm5.32i 672 . 2 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦))))
14 df-isom 6010 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
15 df-isom 6010 . 2 (𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦))))
1613, 14, 153bitr4i 292 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 383   ∈ wcel 2103  ∀wral 3014   ∩ cin 3679   class class class wbr 4760   × cxp 5216  ⟶wf 5997  –1-1-onto→wf1o 6000  ‘cfv 6001   Isom wiso 6002 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pr 5011 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ral 3019  df-rex 3020  df-rab 3023  df-v 3306  df-sbc 3542  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-br 4761  df-opab 4821  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-f1o 6008  df-fv 6009  df-isom 6010 This theorem is referenced by:  isores1  6699  hartogslem1  8563  leiso  13356  icopnfhmeo  22864  iccpnfhmeo  22866  gtiso  29708  xrge0iifhmeo  30212
 Copyright terms: Public domain W3C validator