Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isosctrlem2 Structured version   Visualization version   GIF version

Theorem isosctrlem2 24462
 Description: Lemma for isosctr 24464. Corresponds to the case where one vertex is at 0, another at 1 and the third lies on the unit circle. (Contributed by Saveliy Skresanov, 31-Dec-2016.)
Assertion
Ref Expression
isosctrlem2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) = (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))))

Proof of Theorem isosctrlem2
StepHypRef Expression
1 1cnd 10007 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → 1 ∈ ℂ)
2 simpl1 1062 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → 𝐴 ∈ ℂ)
31, 2negsubd 10349 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 + -𝐴) = (1 − 𝐴))
4 1rp 11787 . . . . . . . 8 1 ∈ ℝ+
54a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → 1 ∈ ℝ+)
6 simpl3 1064 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → ¬ 1 = 𝐴)
7 simpl2 1063 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (abs‘𝐴) = 1)
81, 2, 1sub32d 10375 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → ((1 − 𝐴) − 1) = ((1 − 1) − 𝐴))
9 1m1e0 11040 . . . . . . . . . . . . . . . . 17 (1 − 1) = 0
109oveq1i 6620 . . . . . . . . . . . . . . . 16 ((1 − 1) − 𝐴) = (0 − 𝐴)
11 df-neg 10220 . . . . . . . . . . . . . . . 16 -𝐴 = (0 − 𝐴)
1210, 11eqtr4i 2646 . . . . . . . . . . . . . . 15 ((1 − 1) − 𝐴) = -𝐴
138, 12syl6eq 2671 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → ((1 − 𝐴) − 1) = -𝐴)
14 1cnd 10007 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → 1 ∈ ℂ)
15 simp1 1059 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → 𝐴 ∈ ℂ)
1614, 15subcld 10343 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ∈ ℂ)
1716adantr 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 − 𝐴) ∈ ℂ)
18 ax-1cn 9945 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℂ
19 subeq0 10258 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
2018, 19mpan 705 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
2120biimpd 219 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → ((1 − 𝐴) = 0 → 1 = 𝐴))
2221con3dimp 457 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → ¬ (1 − 𝐴) = 0)
2322neqned 2797 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0)
24233adant2 1078 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0)
2524adantr 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 − 𝐴) ≠ 0)
2617, 25recrecd 10749 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 / (1 / (1 − 𝐴))) = (1 − 𝐴))
2714, 16, 24div2negd 10767 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-1 / -(1 − 𝐴)) = (1 / (1 − 𝐴)))
2827adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (-1 / -(1 − 𝐴)) = (1 / (1 − 𝐴)))
2915negcld 10330 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → -𝐴 ∈ ℂ)
3029, 16, 24cjdivd 13904 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘(-𝐴 / (1 − 𝐴))) = ((∗‘-𝐴) / (∗‘(1 − 𝐴))))
3115cjnegd 13892 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘-𝐴) = -(∗‘𝐴))
32 fveq2 6153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
33 abs0 13966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (abs‘0) = 0
3432, 33syl6eq 2671 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐴 = 0 → (abs‘𝐴) = 0)
35 eqtr2 2641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((abs‘𝐴) = 1 ∧ (abs‘𝐴) = 0) → 1 = 0)
3634, 35sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((abs‘𝐴) = 1 ∧ 𝐴 = 0) → 1 = 0)
37 ax-1ne0 9956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1 ≠ 0
38 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (1 ≠ 0 → 1 ≠ 0)
3938neneqd 2795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (1 ≠ 0 → ¬ 1 = 0)
4037, 39mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((abs‘𝐴) = 1 ∧ 𝐴 = 0) → ¬ 1 = 0)
4136, 40pm2.65da 599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((abs‘𝐴) = 1 → ¬ 𝐴 = 0)
4241adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ¬ 𝐴 = 0)
43 df-ne 2791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
44 oveq1 6617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((abs‘𝐴) = 1 → ((abs‘𝐴)↑2) = (1↑2))
45 sq1 12905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (1↑2) = 1
4644, 45syl6eq 2671 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((abs‘𝐴) = 1 → ((abs‘𝐴)↑2) = 1)
4746adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = 1)
48 absvalsq 13961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
4948adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
5047, 49eqtr3d 2657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 1 = (𝐴 · (∗‘𝐴)))
51503adant3 1079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → 1 = (𝐴 · (∗‘𝐴)))
5251oveq1d 6625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → (1 / 𝐴) = ((𝐴 · (∗‘𝐴)) / 𝐴))
53 simp1 1059 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
5453cjcld 13877 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → (∗‘𝐴) ∈ ℂ)
55 simp3 1061 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
5654, 53, 55divcan3d 10757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → ((𝐴 · (∗‘𝐴)) / 𝐴) = (∗‘𝐴))
5752, 56eqtrd 2655 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → (1 / 𝐴) = (∗‘𝐴))
5843, 57syl3an3br 1364 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 𝐴 = 0) → (1 / 𝐴) = (∗‘𝐴))
5942, 58mpd3an3 1422 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (1 / 𝐴) = (∗‘𝐴))
6059eqcomd 2627 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (∗‘𝐴) = (1 / 𝐴))
61603adant3 1079 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘𝐴) = (1 / 𝐴))
6261negeqd 10226 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → -(∗‘𝐴) = -(1 / 𝐴))
6331, 62eqtrd 2655 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘-𝐴) = -(1 / 𝐴))
6463oveq1d 6625 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → ((∗‘-𝐴) / (∗‘(1 − 𝐴))) = (-(1 / 𝐴) / (∗‘(1 − 𝐴))))
65 cjsub 13830 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘(1 − 𝐴)) = ((∗‘1) − (∗‘𝐴)))
6618, 65mpan 705 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 ∈ ℂ → (∗‘(1 − 𝐴)) = ((∗‘1) − (∗‘𝐴)))
67 1red 10006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐴 ∈ ℂ → 1 ∈ ℝ)
6867cjred 13907 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴 ∈ ℂ → (∗‘1) = 1)
6968oveq1d 6625 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 ∈ ℂ → ((∗‘1) − (∗‘𝐴)) = (1 − (∗‘𝐴)))
7066, 69eqtrd 2655 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ∈ ℂ → (∗‘(1 − 𝐴)) = (1 − (∗‘𝐴)))
7170adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (∗‘(1 − 𝐴)) = (1 − (∗‘𝐴)))
7260oveq2d 6626 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (1 − (∗‘𝐴)) = (1 − (1 / 𝐴)))
7371, 72eqtrd 2655 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (∗‘(1 − 𝐴)) = (1 − (1 / 𝐴)))
74733adant3 1079 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘(1 − 𝐴)) = (1 − (1 / 𝐴)))
7574oveq2d 6626 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-(1 / 𝐴) / (∗‘(1 − 𝐴))) = (-(1 / 𝐴) / (1 − (1 / 𝐴))))
7630, 64, 753eqtrd 2659 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘(-𝐴 / (1 − 𝐴))) = (-(1 / 𝐴) / (1 − (1 / 𝐴))))
77413ad2ant2 1081 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → ¬ 𝐴 = 0)
7877neqned 2797 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → 𝐴 ≠ 0)
79 1cnd 10007 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 1 ∈ ℂ)
80 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
81 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
8279, 80, 81divnegd 10765 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -(1 / 𝐴) = (-1 / 𝐴))
8382oveq1d 6625 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-(1 / 𝐴) / (1 − (1 / 𝐴))) = ((-1 / 𝐴) / (1 − (1 / 𝐴))))
8415, 78, 83syl2anc 692 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-(1 / 𝐴) / (1 − (1 / 𝐴))) = ((-1 / 𝐴) / (1 − (1 / 𝐴))))
8514negcld 10330 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → -1 ∈ ℂ)
8685, 15, 78divcld 10752 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-1 / 𝐴) ∈ ℂ)
8715, 78reccld 10745 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 / 𝐴) ∈ ℂ)
8814, 87subcld 10343 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − (1 / 𝐴)) ∈ ℂ)
8916, 24cjne0d 13884 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘(1 − 𝐴)) ≠ 0)
9074, 89eqnetrrd 2858 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − (1 / 𝐴)) ≠ 0)
9186, 88, 15, 90, 78divcan5d 10778 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → ((𝐴 · (-1 / 𝐴)) / (𝐴 · (1 − (1 / 𝐴)))) = ((-1 / 𝐴) / (1 − (1 / 𝐴))))
9285, 15, 78divcan2d 10754 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝐴 · (-1 / 𝐴)) = -1)
9315, 14, 87subdid 10437 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝐴 · (1 − (1 / 𝐴))) = ((𝐴 · 1) − (𝐴 · (1 / 𝐴))))
9415mulid1d 10008 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝐴 · 1) = 𝐴)
9515, 78recidd 10747 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝐴 · (1 / 𝐴)) = 1)
9694, 95oveq12d 6628 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → ((𝐴 · 1) − (𝐴 · (1 / 𝐴))) = (𝐴 − 1))
9793, 96eqtrd 2655 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝐴 · (1 − (1 / 𝐴))) = (𝐴 − 1))
9892, 97oveq12d 6628 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → ((𝐴 · (-1 / 𝐴)) / (𝐴 · (1 − (1 / 𝐴)))) = (-1 / (𝐴 − 1)))
9984, 91, 983eqtr2d 2661 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-(1 / 𝐴) / (1 − (1 / 𝐴))) = (-1 / (𝐴 − 1)))
100 subcl 10231 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
101100negnegd 10334 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → --(𝐴 − 1) = (𝐴 − 1))
102 negsubdi2 10291 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (1 − 𝐴))
103102negeqd 10226 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → --(𝐴 − 1) = -(1 − 𝐴))
104101, 103eqtr3d 2657 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) = -(1 − 𝐴))
10515, 14, 104syl2anc 692 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝐴 − 1) = -(1 − 𝐴))
106105oveq2d 6626 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-1 / (𝐴 − 1)) = (-1 / -(1 − 𝐴)))
10776, 99, 1063eqtrd 2659 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘(-𝐴 / (1 − 𝐴))) = (-1 / -(1 − 𝐴)))
108107adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (∗‘(-𝐴 / (1 − 𝐴))) = (-1 / -(1 − 𝐴)))
10929, 16, 24divcld 10752 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-𝐴 / (1 − 𝐴)) ∈ ℂ)
110109adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (-𝐴 / (1 − 𝐴)) ∈ ℂ)
111 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (ℑ‘(-𝐴 / (1 − 𝐴))) = 0)
112110, 111reim0bd 13881 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (-𝐴 / (1 − 𝐴)) ∈ ℝ)
113112cjred 13907 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (∗‘(-𝐴 / (1 − 𝐴))) = (-𝐴 / (1 − 𝐴)))
114113, 112eqeltrd 2698 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (∗‘(-𝐴 / (1 − 𝐴))) ∈ ℝ)
115108, 114eqeltrrd 2699 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (-1 / -(1 − 𝐴)) ∈ ℝ)
11628, 115eqeltrrd 2699 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 / (1 − 𝐴)) ∈ ℝ)
11716, 24recne0d 10746 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 / (1 − 𝐴)) ≠ 0)
118117adantr 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 / (1 − 𝐴)) ≠ 0)
119116, 118rereccld 10803 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 / (1 / (1 − 𝐴))) ∈ ℝ)
12026, 119eqeltrrd 2699 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 − 𝐴) ∈ ℝ)
121 1red 10006 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → 1 ∈ ℝ)
122120, 121resubcld 10409 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → ((1 − 𝐴) − 1) ∈ ℝ)
12313, 122eqeltrrd 2699 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → -𝐴 ∈ ℝ)
1242, 123negrebd 10342 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → 𝐴 ∈ ℝ)
125124absord 14095 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴))
126 eqeq1 2625 . . . . . . . . . . . . 13 ((abs‘𝐴) = 1 → ((abs‘𝐴) = 𝐴 ↔ 1 = 𝐴))
127126biimpd 219 . . . . . . . . . . . 12 ((abs‘𝐴) = 1 → ((abs‘𝐴) = 𝐴 → 1 = 𝐴))
128 eqeq1 2625 . . . . . . . . . . . . 13 ((abs‘𝐴) = 1 → ((abs‘𝐴) = -𝐴 ↔ 1 = -𝐴))
129128biimpd 219 . . . . . . . . . . . 12 ((abs‘𝐴) = 1 → ((abs‘𝐴) = -𝐴 → 1 = -𝐴))
130127, 129orim12d 882 . . . . . . . . . . 11 ((abs‘𝐴) = 1 → (((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴) → (1 = 𝐴 ∨ 1 = -𝐴)))
1317, 125, 130sylc 65 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 = 𝐴 ∨ 1 = -𝐴))
132131ord 392 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (¬ 1 = 𝐴 → 1 = -𝐴))
1336, 132mpd 15 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → 1 = -𝐴)
134133, 5eqeltrrd 2699 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → -𝐴 ∈ ℝ+)
1355, 134rpaddcld 11838 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 + -𝐴) ∈ ℝ+)
1363, 135eqeltrrd 2699 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 − 𝐴) ∈ ℝ+)
137136relogcld 24286 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (log‘(1 − 𝐴)) ∈ ℝ)
138137reim0d 13906 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (ℑ‘(log‘(1 − 𝐴))) = 0)
139134, 136rpdivcld 11840 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (-𝐴 / (1 − 𝐴)) ∈ ℝ+)
140139relogcld 24286 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (log‘(-𝐴 / (1 − 𝐴))) ∈ ℝ)
141140reim0d 13906 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))) = 0)
142138, 141eqtr4d 2658 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (ℑ‘(log‘(1 − 𝐴))) = (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))))
14316, 24logcld 24234 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (log‘(1 − 𝐴)) ∈ ℂ)
144143adantr 481 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (log‘(1 − 𝐴)) ∈ ℂ)
145144imcld 13876 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ)
146145recnd 10019 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℂ)
147109adantr 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (-𝐴 / (1 − 𝐴)) ∈ ℂ)
14815, 78negne0d 10341 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → -𝐴 ≠ 0)
14929, 16, 148, 24divne0d 10768 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-𝐴 / (1 − 𝐴)) ≠ 0)
150149adantr 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (-𝐴 / (1 − 𝐴)) ≠ 0)
151147, 150logcld 24234 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (log‘(-𝐴 / (1 − 𝐴))) ∈ ℂ)
152151imcld 13876 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))) ∈ ℝ)
153152recnd 10019 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))) ∈ ℂ)
154107fveq2d 6157 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (log‘(∗‘(-𝐴 / (1 − 𝐴)))) = (log‘(-1 / -(1 − 𝐴))))
155154adantr 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (log‘(∗‘(-𝐴 / (1 − 𝐴)))) = (log‘(-1 / -(1 − 𝐴))))
156 logcj 24269 . . . . . . 7 (((-𝐴 / (1 − 𝐴)) ∈ ℂ ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (log‘(∗‘(-𝐴 / (1 − 𝐴)))) = (∗‘(log‘(-𝐴 / (1 − 𝐴)))))
157109, 156sylan 488 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (log‘(∗‘(-𝐴 / (1 − 𝐴)))) = (∗‘(log‘(-𝐴 / (1 − 𝐴)))))
15816, 24reccld 10745 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 / (1 − 𝐴)) ∈ ℂ)
159158, 117logcld 24234 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (log‘(1 / (1 − 𝐴))) ∈ ℂ)
160159negnegd 10334 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → --(log‘(1 / (1 − 𝐴))) = (log‘(1 / (1 − 𝐴))))
161 isosctrlem1 24461 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π)
162 logrec 24414 . . . . . . . . . 10 (((1 − 𝐴) ∈ ℂ ∧ (1 − 𝐴) ≠ 0 ∧ (ℑ‘(log‘(1 − 𝐴))) ≠ π) → (log‘(1 − 𝐴)) = -(log‘(1 / (1 − 𝐴))))
16316, 24, 161, 162syl3anc 1323 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (log‘(1 − 𝐴)) = -(log‘(1 / (1 − 𝐴))))
164163negeqd 10226 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → -(log‘(1 − 𝐴)) = --(log‘(1 / (1 − 𝐴))))
16527fveq2d 6157 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (log‘(-1 / -(1 − 𝐴))) = (log‘(1 / (1 − 𝐴))))
166160, 164, 1653eqtr4rd 2666 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (log‘(-1 / -(1 − 𝐴))) = -(log‘(1 − 𝐴)))
167166adantr 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (log‘(-1 / -(1 − 𝐴))) = -(log‘(1 − 𝐴)))
168155, 157, 1673eqtr3rd 2664 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → -(log‘(1 − 𝐴)) = (∗‘(log‘(-𝐴 / (1 − 𝐴)))))
169168fveq2d 6157 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘-(log‘(1 − 𝐴))) = (ℑ‘(∗‘(log‘(-𝐴 / (1 − 𝐴))))))
170144imnegd 13891 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘-(log‘(1 − 𝐴))) = -(ℑ‘(log‘(1 − 𝐴))))
171151imcjd 13886 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘(∗‘(log‘(-𝐴 / (1 − 𝐴))))) = -(ℑ‘(log‘(-𝐴 / (1 − 𝐴)))))
172169, 170, 1713eqtr3d 2663 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → -(ℑ‘(log‘(1 − 𝐴))) = -(ℑ‘(log‘(-𝐴 / (1 − 𝐴)))))
173146, 153, 172neg11d 10355 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘(log‘(1 − 𝐴))) = (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))))
174142, 173pm2.61dane 2877 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) = (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ‘cfv 5852  (class class class)co 6610  ℂcc 9885  ℝcr 9886  0cc0 9887  1c1 9888   + caddc 9890   · cmul 9892   − cmin 10217  -cneg 10218   / cdiv 10635  2c2 11021  ℝ+crp 11783  ↑cexp 12807  ∗ccj 13777  ℑcim 13779  abscabs 13915  πcpi 14729  logclog 24218 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-fi 8268  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-ioo 12128  df-ioc 12129  df-ico 12130  df-icc 12131  df-fz 12276  df-fzo 12414  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-fac 13008  df-bc 13037  df-hash 13065  df-shft 13748  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-limsup 14143  df-clim 14160  df-rlim 14161  df-sum 14358  df-ef 14730  df-sin 14732  df-cos 14733  df-pi 14735  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-hom 15894  df-cco 15895  df-rest 16011  df-topn 16012  df-0g 16030  df-gsum 16031  df-topgen 16032  df-pt 16033  df-prds 16036  df-xrs 16090  df-qtop 16095  df-imas 16096  df-xps 16098  df-mre 16174  df-mrc 16175  df-acs 16177  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-mulg 17469  df-cntz 17678  df-cmn 18123  df-psmet 19666  df-xmet 19667  df-met 19668  df-bl 19669  df-mopn 19670  df-fbas 19671  df-fg 19672  df-cnfld 19675  df-top 20627  df-topon 20644  df-topsp 20657  df-bases 20670  df-cld 20742  df-ntr 20743  df-cls 20744  df-nei 20821  df-lp 20859  df-perf 20860  df-cn 20950  df-cnp 20951  df-haus 21038  df-tx 21284  df-hmeo 21477  df-fil 21569  df-fm 21661  df-flim 21662  df-flf 21663  df-xms 22044  df-ms 22045  df-tms 22046  df-cncf 22600  df-limc 23549  df-dv 23550  df-log 24220 This theorem is referenced by:  isosctrlem3  24463
 Copyright terms: Public domain W3C validator