MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoselem Structured version   Visualization version   GIF version

Theorem isoselem 7086
Description: Lemma for isose 7088. (Contributed by Mario Carneiro, 23-Jun-2015.)
Hypotheses
Ref Expression
isofrlem.1 (𝜑𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
isofrlem.2 (𝜑 → (𝐻𝑥) ∈ V)
Assertion
Ref Expression
isoselem (𝜑 → (𝑅 Se 𝐴𝑆 Se 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐻   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆

Proof of Theorem isoselem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfse2 5956 . . . . . . . . 9 (𝑅 Se 𝐴 ↔ ∀𝑧𝐴 (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V)
21biimpi 218 . . . . . . . 8 (𝑅 Se 𝐴 → ∀𝑧𝐴 (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V)
32r19.21bi 3206 . . . . . . 7 ((𝑅 Se 𝐴𝑧𝐴) → (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V)
43expcom 416 . . . . . 6 (𝑧𝐴 → (𝑅 Se 𝐴 → (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V))
54adantl 484 . . . . 5 ((𝜑𝑧𝐴) → (𝑅 Se 𝐴 → (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V))
6 imaeq2 5918 . . . . . . . . . . 11 (𝑥 = (𝐴 ∩ (𝑅 “ {𝑧})) → (𝐻𝑥) = (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))))
76eleq1d 2895 . . . . . . . . . 10 (𝑥 = (𝐴 ∩ (𝑅 “ {𝑧})) → ((𝐻𝑥) ∈ V ↔ (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
87imbi2d 343 . . . . . . . . 9 (𝑥 = (𝐴 ∩ (𝑅 “ {𝑧})) → ((𝜑 → (𝐻𝑥) ∈ V) ↔ (𝜑 → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V)))
9 isofrlem.2 . . . . . . . . 9 (𝜑 → (𝐻𝑥) ∈ V)
108, 9vtoclg 3566 . . . . . . . 8 ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝜑 → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
1110com12 32 . . . . . . 7 (𝜑 → ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
1211adantr 483 . . . . . 6 ((𝜑𝑧𝐴) → ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
13 isofrlem.1 . . . . . . . 8 (𝜑𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
14 isoini 7083 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑧𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})))
1513, 14sylan 582 . . . . . . 7 ((𝜑𝑧𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})))
1615eleq1d 2895 . . . . . 6 ((𝜑𝑧𝐴) → ((𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V ↔ (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
1712, 16sylibd 241 . . . . 5 ((𝜑𝑧𝐴) → ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
185, 17syld 47 . . . 4 ((𝜑𝑧𝐴) → (𝑅 Se 𝐴 → (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
1918ralrimdva 3187 . . 3 (𝜑 → (𝑅 Se 𝐴 → ∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
20 isof1o 7068 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
21 f1ofn 6609 . . . . 5 (𝐻:𝐴1-1-onto𝐵𝐻 Fn 𝐴)
22 sneq 4569 . . . . . . . . 9 (𝑦 = (𝐻𝑧) → {𝑦} = {(𝐻𝑧)})
2322imaeq2d 5922 . . . . . . . 8 (𝑦 = (𝐻𝑧) → (𝑆 “ {𝑦}) = (𝑆 “ {(𝐻𝑧)}))
2423ineq2d 4187 . . . . . . 7 (𝑦 = (𝐻𝑧) → (𝐵 ∩ (𝑆 “ {𝑦})) = (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})))
2524eleq1d 2895 . . . . . 6 (𝑦 = (𝐻𝑧) → ((𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
2625ralrn 6847 . . . . 5 (𝐻 Fn 𝐴 → (∀𝑦 ∈ ran 𝐻(𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ ∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
2713, 20, 21, 264syl 19 . . . 4 (𝜑 → (∀𝑦 ∈ ran 𝐻(𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ ∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
28 f1ofo 6615 . . . . . 6 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴onto𝐵)
29 forn 6586 . . . . . 6 (𝐻:𝐴onto𝐵 → ran 𝐻 = 𝐵)
3013, 20, 28, 294syl 19 . . . . 5 (𝜑 → ran 𝐻 = 𝐵)
3130raleqdv 3414 . . . 4 (𝜑 → (∀𝑦 ∈ ran 𝐻(𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V))
3227, 31bitr3d 283 . . 3 (𝜑 → (∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V ↔ ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V))
3319, 32sylibd 241 . 2 (𝜑 → (𝑅 Se 𝐴 → ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V))
34 dfse2 5956 . 2 (𝑆 Se 𝐵 ↔ ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V)
3533, 34syl6ibr 254 1 (𝜑 → (𝑅 Se 𝐴𝑆 Se 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wral 3136  Vcvv 3493  cin 3933  {csn 4559   Se wse 5505  ccnv 5547  ran crn 5549  cima 5551   Fn wfn 6343  ontowfo 6346  1-1-ontowf1o 6347  cfv 6348   Isom wiso 6349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-se 5508  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357
This theorem is referenced by:  isose  7088
  Copyright terms: Public domain W3C validator