Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isotone1 Structured version   Visualization version   GIF version

Theorem isotone1 40396
Description: Two different ways to say subset relation persists across applications of a function. (Contributed by RP, 31-May-2021.)
Assertion
Ref Expression
isotone1 (∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴(𝑎𝑏 → (𝐹𝑎) ⊆ (𝐹𝑏)) ↔ ∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹‘(𝑎𝑏)))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐹,𝑎,𝑏

Proof of Theorem isotone1
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3991 . . . 4 (𝑎 = 𝑐 → (𝑎𝑏𝑐𝑏))
2 fveq2 6669 . . . . 5 (𝑎 = 𝑐 → (𝐹𝑎) = (𝐹𝑐))
32sseq1d 3997 . . . 4 (𝑎 = 𝑐 → ((𝐹𝑎) ⊆ (𝐹𝑏) ↔ (𝐹𝑐) ⊆ (𝐹𝑏)))
41, 3imbi12d 347 . . 3 (𝑎 = 𝑐 → ((𝑎𝑏 → (𝐹𝑎) ⊆ (𝐹𝑏)) ↔ (𝑐𝑏 → (𝐹𝑐) ⊆ (𝐹𝑏))))
5 sseq2 3992 . . . 4 (𝑏 = 𝑑 → (𝑐𝑏𝑐𝑑))
6 fveq2 6669 . . . . 5 (𝑏 = 𝑑 → (𝐹𝑏) = (𝐹𝑑))
76sseq2d 3998 . . . 4 (𝑏 = 𝑑 → ((𝐹𝑐) ⊆ (𝐹𝑏) ↔ (𝐹𝑐) ⊆ (𝐹𝑑)))
85, 7imbi12d 347 . . 3 (𝑏 = 𝑑 → ((𝑐𝑏 → (𝐹𝑐) ⊆ (𝐹𝑏)) ↔ (𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑))))
94, 8cbvral2vw 3461 . 2 (∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴(𝑎𝑏 → (𝐹𝑎) ⊆ (𝐹𝑏)) ↔ ∀𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴(𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑)))
10 ssun1 4147 . . . . . 6 𝑎 ⊆ (𝑎𝑏)
11 simprl 769 . . . . . . 7 ((∀𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴(𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → 𝑎 ∈ 𝒫 𝐴)
12 pwuncl 7491 . . . . . . . 8 ((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) → (𝑎𝑏) ∈ 𝒫 𝐴)
1312adantl 484 . . . . . . 7 ((∀𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴(𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → (𝑎𝑏) ∈ 𝒫 𝐴)
14 simpl 485 . . . . . . 7 ((∀𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴(𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → ∀𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴(𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑)))
15 sseq1 3991 . . . . . . . . 9 (𝑐 = 𝑎 → (𝑐𝑑𝑎𝑑))
16 fveq2 6669 . . . . . . . . . 10 (𝑐 = 𝑎 → (𝐹𝑐) = (𝐹𝑎))
1716sseq1d 3997 . . . . . . . . 9 (𝑐 = 𝑎 → ((𝐹𝑐) ⊆ (𝐹𝑑) ↔ (𝐹𝑎) ⊆ (𝐹𝑑)))
1815, 17imbi12d 347 . . . . . . . 8 (𝑐 = 𝑎 → ((𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑)) ↔ (𝑎𝑑 → (𝐹𝑎) ⊆ (𝐹𝑑))))
19 sseq2 3992 . . . . . . . . 9 (𝑑 = (𝑎𝑏) → (𝑎𝑑𝑎 ⊆ (𝑎𝑏)))
20 fveq2 6669 . . . . . . . . . 10 (𝑑 = (𝑎𝑏) → (𝐹𝑑) = (𝐹‘(𝑎𝑏)))
2120sseq2d 3998 . . . . . . . . 9 (𝑑 = (𝑎𝑏) → ((𝐹𝑎) ⊆ (𝐹𝑑) ↔ (𝐹𝑎) ⊆ (𝐹‘(𝑎𝑏))))
2219, 21imbi12d 347 . . . . . . . 8 (𝑑 = (𝑎𝑏) → ((𝑎𝑑 → (𝐹𝑎) ⊆ (𝐹𝑑)) ↔ (𝑎 ⊆ (𝑎𝑏) → (𝐹𝑎) ⊆ (𝐹‘(𝑎𝑏)))))
2318, 22rspc2va 3633 . . . . . . 7 (((𝑎 ∈ 𝒫 𝐴 ∧ (𝑎𝑏) ∈ 𝒫 𝐴) ∧ ∀𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴(𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑))) → (𝑎 ⊆ (𝑎𝑏) → (𝐹𝑎) ⊆ (𝐹‘(𝑎𝑏))))
2411, 13, 14, 23syl21anc 835 . . . . . 6 ((∀𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴(𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → (𝑎 ⊆ (𝑎𝑏) → (𝐹𝑎) ⊆ (𝐹‘(𝑎𝑏))))
2510, 24mpi 20 . . . . 5 ((∀𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴(𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → (𝐹𝑎) ⊆ (𝐹‘(𝑎𝑏)))
26 ssun2 4148 . . . . . 6 𝑏 ⊆ (𝑎𝑏)
27 simprr 771 . . . . . . 7 ((∀𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴(𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → 𝑏 ∈ 𝒫 𝐴)
28 sseq1 3991 . . . . . . . . 9 (𝑐 = 𝑏 → (𝑐𝑑𝑏𝑑))
29 fveq2 6669 . . . . . . . . . 10 (𝑐 = 𝑏 → (𝐹𝑐) = (𝐹𝑏))
3029sseq1d 3997 . . . . . . . . 9 (𝑐 = 𝑏 → ((𝐹𝑐) ⊆ (𝐹𝑑) ↔ (𝐹𝑏) ⊆ (𝐹𝑑)))
3128, 30imbi12d 347 . . . . . . . 8 (𝑐 = 𝑏 → ((𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑)) ↔ (𝑏𝑑 → (𝐹𝑏) ⊆ (𝐹𝑑))))
32 sseq2 3992 . . . . . . . . 9 (𝑑 = (𝑎𝑏) → (𝑏𝑑𝑏 ⊆ (𝑎𝑏)))
3320sseq2d 3998 . . . . . . . . 9 (𝑑 = (𝑎𝑏) → ((𝐹𝑏) ⊆ (𝐹𝑑) ↔ (𝐹𝑏) ⊆ (𝐹‘(𝑎𝑏))))
3432, 33imbi12d 347 . . . . . . . 8 (𝑑 = (𝑎𝑏) → ((𝑏𝑑 → (𝐹𝑏) ⊆ (𝐹𝑑)) ↔ (𝑏 ⊆ (𝑎𝑏) → (𝐹𝑏) ⊆ (𝐹‘(𝑎𝑏)))))
3531, 34rspc2va 3633 . . . . . . 7 (((𝑏 ∈ 𝒫 𝐴 ∧ (𝑎𝑏) ∈ 𝒫 𝐴) ∧ ∀𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴(𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑))) → (𝑏 ⊆ (𝑎𝑏) → (𝐹𝑏) ⊆ (𝐹‘(𝑎𝑏))))
3627, 13, 14, 35syl21anc 835 . . . . . 6 ((∀𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴(𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → (𝑏 ⊆ (𝑎𝑏) → (𝐹𝑏) ⊆ (𝐹‘(𝑎𝑏))))
3726, 36mpi 20 . . . . 5 ((∀𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴(𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → (𝐹𝑏) ⊆ (𝐹‘(𝑎𝑏)))
3825, 37unssd 4161 . . . 4 ((∀𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴(𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹‘(𝑎𝑏)))
3938ralrimivva 3191 . . 3 (∀𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴(𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑)) → ∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹‘(𝑎𝑏)))
40 ssequn1 4155 . . . . 5 (𝑐𝑑 ↔ (𝑐𝑑) = 𝑑)
412uneq1d 4137 . . . . . . . . . . . 12 (𝑎 = 𝑐 → ((𝐹𝑎) ∪ (𝐹𝑏)) = ((𝐹𝑐) ∪ (𝐹𝑏)))
42 uneq1 4131 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → (𝑎𝑏) = (𝑐𝑏))
4342fveq2d 6673 . . . . . . . . . . . 12 (𝑎 = 𝑐 → (𝐹‘(𝑎𝑏)) = (𝐹‘(𝑐𝑏)))
4441, 43sseq12d 3999 . . . . . . . . . . 11 (𝑎 = 𝑐 → (((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹‘(𝑎𝑏)) ↔ ((𝐹𝑐) ∪ (𝐹𝑏)) ⊆ (𝐹‘(𝑐𝑏))))
456uneq2d 4138 . . . . . . . . . . . 12 (𝑏 = 𝑑 → ((𝐹𝑐) ∪ (𝐹𝑏)) = ((𝐹𝑐) ∪ (𝐹𝑑)))
46 uneq2 4132 . . . . . . . . . . . . 13 (𝑏 = 𝑑 → (𝑐𝑏) = (𝑐𝑑))
4746fveq2d 6673 . . . . . . . . . . . 12 (𝑏 = 𝑑 → (𝐹‘(𝑐𝑏)) = (𝐹‘(𝑐𝑑)))
4845, 47sseq12d 3999 . . . . . . . . . . 11 (𝑏 = 𝑑 → (((𝐹𝑐) ∪ (𝐹𝑏)) ⊆ (𝐹‘(𝑐𝑏)) ↔ ((𝐹𝑐) ∪ (𝐹𝑑)) ⊆ (𝐹‘(𝑐𝑑))))
4944, 48rspc2va 3633 . . . . . . . . . 10 (((𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴) ∧ ∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹‘(𝑎𝑏))) → ((𝐹𝑐) ∪ (𝐹𝑑)) ⊆ (𝐹‘(𝑐𝑑)))
5049ancoms 461 . . . . . . . . 9 ((∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹‘(𝑎𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴)) → ((𝐹𝑐) ∪ (𝐹𝑑)) ⊆ (𝐹‘(𝑐𝑑)))
5150unssad 4162 . . . . . . . 8 ((∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹‘(𝑎𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴)) → (𝐹𝑐) ⊆ (𝐹‘(𝑐𝑑)))
5251adantr 483 . . . . . . 7 (((∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹‘(𝑎𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴)) ∧ (𝑐𝑑) = 𝑑) → (𝐹𝑐) ⊆ (𝐹‘(𝑐𝑑)))
53 fveq2 6669 . . . . . . . 8 ((𝑐𝑑) = 𝑑 → (𝐹‘(𝑐𝑑)) = (𝐹𝑑))
5453adantl 484 . . . . . . 7 (((∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹‘(𝑎𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴)) ∧ (𝑐𝑑) = 𝑑) → (𝐹‘(𝑐𝑑)) = (𝐹𝑑))
5552, 54sseqtrd 4006 . . . . . 6 (((∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹‘(𝑎𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴)) ∧ (𝑐𝑑) = 𝑑) → (𝐹𝑐) ⊆ (𝐹𝑑))
5655ex 415 . . . . 5 ((∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹‘(𝑎𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴)) → ((𝑐𝑑) = 𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑)))
5740, 56syl5bi 244 . . . 4 ((∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹‘(𝑎𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴)) → (𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑)))
5857ralrimivva 3191 . . 3 (∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹‘(𝑎𝑏)) → ∀𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴(𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑)))
5939, 58impbii 211 . 2 (∀𝑐 ∈ 𝒫 𝐴𝑑 ∈ 𝒫 𝐴(𝑐𝑑 → (𝐹𝑐) ⊆ (𝐹𝑑)) ↔ ∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹‘(𝑎𝑏)))
609, 59bitri 277 1 (∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴(𝑎𝑏 → (𝐹𝑎) ⊆ (𝐹𝑏)) ↔ ∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹‘(𝑎𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  cun 3933  wss 3935  𝒫 cpw 4538  cfv 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-iota 6313  df-fv 6362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator