MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isph Structured version   Visualization version   GIF version

Theorem isph 26850
Description: The predicate "is an inner product space." (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isph.1 𝑋 = (BaseSet‘𝑈)
isph.2 𝐺 = ( +𝑣𝑈)
isph.3 𝑀 = ( −𝑣𝑈)
isph.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
isph (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isph
StepHypRef Expression
1 phnv 26842 . 2 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
2 isph.2 . . . . 5 𝐺 = ( +𝑣𝑈)
3 eqid 2514 . . . . 5 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 isph.6 . . . . 5 𝑁 = (normCV𝑈)
52, 3, 4nvop 26693 . . . 4 (𝑈 ∈ NrmCVec → 𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩)
6 eleq1 2580 . . . . 5 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (𝑈 ∈ CPreHilOLD ↔ ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD))
7 fvex 5996 . . . . . . . 8 ( +𝑣𝑈) ∈ V
82, 7eqeltri 2588 . . . . . . 7 𝐺 ∈ V
9 fvex 5996 . . . . . . 7 ( ·𝑠OLD𝑈) ∈ V
10 fvex 5996 . . . . . . . 8 (normCV𝑈) ∈ V
114, 10eqeltri 2588 . . . . . . 7 𝑁 ∈ V
12 isph.1 . . . . . . . . 9 𝑋 = (BaseSet‘𝑈)
1312, 2bafval 26610 . . . . . . . 8 𝑋 = ran 𝐺
1413isphg 26845 . . . . . . 7 ((𝐺 ∈ V ∧ ( ·𝑠OLD𝑈) ∈ V ∧ 𝑁 ∈ V) → (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
158, 9, 11, 14mp3an 1415 . . . . . 6 (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
16 isph.3 . . . . . . . . . . . . . . . 16 𝑀 = ( −𝑣𝑈)
1712, 2, 3, 16nvmval 26650 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑀𝑦) = (𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))
18173expa 1256 . . . . . . . . . . . . . 14 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝑀𝑦) = (𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))
1918fveq2d 5990 . . . . . . . . . . . . 13 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑁‘(𝑥𝑀𝑦)) = (𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦))))
2019oveq1d 6440 . . . . . . . . . . . 12 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑁‘(𝑥𝑀𝑦))↑2) = ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2))
2120oveq2d 6441 . . . . . . . . . . 11 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)))
2221eqeq1d 2516 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
2322ralbidva 2872 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → (∀𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ ∀𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
2423ralbidva 2872 . . . . . . . 8 (𝑈 ∈ NrmCVec → (∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
2524pm5.32i 666 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))) ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
26 eleq1 2580 . . . . . . . 8 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (𝑈 ∈ NrmCVec ↔ ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec))
2726anbi1d 736 . . . . . . 7 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → ((𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))) ↔ (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
2825, 27syl5rbb 271 . . . . . 6 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → ((⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))) ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
2915, 28syl5bb 270 . . . . 5 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
306, 29bitrd 266 . . . 4 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
315, 30syl 17 . . 3 (𝑈 ∈ NrmCVec → (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
3231bianabs 919 . 2 (𝑈 ∈ NrmCVec → (𝑈 ∈ CPreHilOLD ↔ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
331, 32biadan2 671 1 (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382   = wceq 1474  wcel 1938  wral 2800  Vcvv 3077  cop 4034  cfv 5689  (class class class)co 6425  1c1 9690   + caddc 9692   · cmul 9694  -cneg 10016  2c2 10823  cexp 12586  NrmCVeccnv 26590   +𝑣 cpv 26591  BaseSetcba 26592   ·𝑠OLD cns 26593  𝑣 cnsb 26595  normCVcnmcv 26596  CPreHilOLDccphlo 26840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6721  ax-resscn 9746  ax-1cn 9747  ax-icn 9748  ax-addcl 9749  ax-addrcl 9750  ax-mulcl 9751  ax-mulrcl 9752  ax-mulcom 9753  ax-addass 9754  ax-mulass 9755  ax-distr 9756  ax-i2m1 9757  ax-1ne0 9758  ax-1rid 9759  ax-rnegex 9760  ax-rrecex 9761  ax-cnre 9762  ax-pre-lttri 9763  ax-pre-lttrn 9764  ax-pre-ltadd 9765
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-id 4847  df-po 4853  df-so 4854  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-1st 6932  df-2nd 6933  df-er 7503  df-en 7716  df-dom 7717  df-sdom 7718  df-pnf 9829  df-mnf 9830  df-ltxr 9832  df-sub 10017  df-neg 10018  df-grpo 26480  df-gid 26481  df-ginv 26482  df-gdiv 26483  df-ablo 26535  df-vc 26550  df-nv 26598  df-va 26601  df-ba 26602  df-sm 26603  df-0v 26604  df-vs 26605  df-nmcv 26606  df-ph 26841
This theorem is referenced by:  phpar2  26851  sspph  26883
  Copyright terms: Public domain W3C validator