MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isph Structured version   Visualization version   GIF version

Theorem isph 28527
Description: The predicate "is an inner product space." (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isph.1 𝑋 = (BaseSet‘𝑈)
isph.2 𝐺 = ( +𝑣𝑈)
isph.3 𝑀 = ( −𝑣𝑈)
isph.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
isph (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isph
StepHypRef Expression
1 phnv 28519 . 2 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
2 isph.2 . . . . 5 𝐺 = ( +𝑣𝑈)
3 eqid 2821 . . . . 5 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 isph.6 . . . . 5 𝑁 = (normCV𝑈)
52, 3, 4nvop 28381 . . . 4 (𝑈 ∈ NrmCVec → 𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩)
6 eleq1 2900 . . . . 5 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (𝑈 ∈ CPreHilOLD ↔ ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD))
72fvexi 6678 . . . . . . 7 𝐺 ∈ V
8 fvex 6677 . . . . . . 7 ( ·𝑠OLD𝑈) ∈ V
94fvexi 6678 . . . . . . 7 𝑁 ∈ V
10 isph.1 . . . . . . . . 9 𝑋 = (BaseSet‘𝑈)
1110, 2bafval 28309 . . . . . . . 8 𝑋 = ran 𝐺
1211isphg 28522 . . . . . . 7 ((𝐺 ∈ V ∧ ( ·𝑠OLD𝑈) ∈ V ∧ 𝑁 ∈ V) → (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
137, 8, 9, 12mp3an 1452 . . . . . 6 (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
14 isph.3 . . . . . . . . . . . . . . . 16 𝑀 = ( −𝑣𝑈)
1510, 2, 3, 14nvmval 28347 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑀𝑦) = (𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))
16153expa 1110 . . . . . . . . . . . . . 14 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝑀𝑦) = (𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))
1716fveq2d 6668 . . . . . . . . . . . . 13 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑁‘(𝑥𝑀𝑦)) = (𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦))))
1817oveq1d 7160 . . . . . . . . . . . 12 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑁‘(𝑥𝑀𝑦))↑2) = ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2))
1918oveq2d 7161 . . . . . . . . . . 11 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)))
2019eqeq1d 2823 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
2120ralbidva 3196 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → (∀𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ ∀𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
2221ralbidva 3196 . . . . . . . 8 (𝑈 ∈ NrmCVec → (∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
2322pm5.32i 575 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))) ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
24 eleq1 2900 . . . . . . . 8 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (𝑈 ∈ NrmCVec ↔ ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec))
2524anbi1d 629 . . . . . . 7 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → ((𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))) ↔ (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
2623, 25syl5rbb 285 . . . . . 6 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → ((⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))) ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
2713, 26syl5bb 284 . . . . 5 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
286, 27bitrd 280 . . . 4 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
295, 28syl 17 . . 3 (𝑈 ∈ NrmCVec → (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
3029bianabs 542 . 2 (𝑈 ∈ NrmCVec → (𝑈 ∈ CPreHilOLD ↔ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
311, 30biadanii 818 1 (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3138  Vcvv 3495  cop 4565  cfv 6349  (class class class)co 7145  1c1 10527   + caddc 10529   · cmul 10531  -cneg 10860  2c2 11681  cexp 13419  NrmCVeccnv 28289   +𝑣 cpv 28290  BaseSetcba 28291   ·𝑠OLD cns 28292  𝑣 cnsb 28294  normCVcnmcv 28295  CPreHilOLDccphlo 28517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7680  df-2nd 7681  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-sub 10861  df-neg 10862  df-grpo 28198  df-gid 28199  df-ginv 28200  df-gdiv 28201  df-ablo 28250  df-vc 28264  df-nv 28297  df-va 28300  df-ba 28301  df-sm 28302  df-0v 28303  df-vs 28304  df-nmcv 28305  df-ph 28518
This theorem is referenced by:  phpar2  28528
  Copyright terms: Public domain W3C validator