Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispridl2 Structured version   Visualization version   GIF version

Theorem ispridl2 33466
Description: A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc 33498 for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ispridl2.1 𝐺 = (1st𝑅)
ispridl2.2 𝐻 = (2nd𝑅)
ispridl2.3 𝑋 = ran 𝐺
Assertion
Ref Expression
ispridl2 ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))) → 𝑃 ∈ (PrIdl‘𝑅))
Distinct variable groups:   𝑅,𝑎,𝑏   𝑃,𝑎,𝑏   𝑋,𝑎,𝑏
Allowed substitution hints:   𝐺(𝑎,𝑏)   𝐻(𝑎,𝑏)

Proof of Theorem ispridl2
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ispridl2.1 . . . . . . . . . . . . . 14 𝐺 = (1st𝑅)
2 ispridl2.3 . . . . . . . . . . . . . 14 𝑋 = ran 𝐺
31, 2idlss 33444 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ 𝑟 ∈ (Idl‘𝑅)) → 𝑟𝑋)
4 ssralv 3645 . . . . . . . . . . . . 13 (𝑟𝑋 → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑎𝑟𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
53, 4syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑟 ∈ (Idl‘𝑅)) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑎𝑟𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
65adantrr 752 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝑟 ∈ (Idl‘𝑅) ∧ 𝑠 ∈ (Idl‘𝑅))) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑎𝑟𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
71, 2idlss 33444 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ 𝑠 ∈ (Idl‘𝑅)) → 𝑠𝑋)
8 ssralv 3645 . . . . . . . . . . . . . 14 (𝑠𝑋 → (∀𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
98ralimdv 2957 . . . . . . . . . . . . 13 (𝑠𝑋 → (∀𝑎𝑟𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
107, 9syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑠 ∈ (Idl‘𝑅)) → (∀𝑎𝑟𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
1110adantrl 751 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝑟 ∈ (Idl‘𝑅) ∧ 𝑠 ∈ (Idl‘𝑅))) → (∀𝑎𝑟𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
126, 11syld 47 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ (𝑟 ∈ (Idl‘𝑅) ∧ 𝑠 ∈ (Idl‘𝑅))) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
1312adantlr 750 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑟 ∈ (Idl‘𝑅) ∧ 𝑠 ∈ (Idl‘𝑅))) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
14 r19.26-2 3058 . . . . . . . . . . 11 (∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 ∧ ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) ↔ (∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 ∧ ∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
15 pm3.35 610 . . . . . . . . . . . . . 14 (((𝑎𝐻𝑏) ∈ 𝑃 ∧ ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → (𝑎𝑃𝑏𝑃))
1615ralimi 2947 . . . . . . . . . . . . 13 (∀𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 ∧ ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → ∀𝑏𝑠 (𝑎𝑃𝑏𝑃))
1716ralimi 2947 . . . . . . . . . . . 12 (∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 ∧ ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → ∀𝑎𝑟𝑏𝑠 (𝑎𝑃𝑏𝑃))
18 2ralor 3099 . . . . . . . . . . . . 13 (∀𝑎𝑟𝑏𝑠 (𝑎𝑃𝑏𝑃) ↔ (∀𝑎𝑟 𝑎𝑃 ∨ ∀𝑏𝑠 𝑏𝑃))
19 dfss3 3573 . . . . . . . . . . . . . 14 (𝑟𝑃 ↔ ∀𝑎𝑟 𝑎𝑃)
20 dfss3 3573 . . . . . . . . . . . . . 14 (𝑠𝑃 ↔ ∀𝑏𝑠 𝑏𝑃)
2119, 20orbi12i 543 . . . . . . . . . . . . 13 ((𝑟𝑃𝑠𝑃) ↔ (∀𝑎𝑟 𝑎𝑃 ∨ ∀𝑏𝑠 𝑏𝑃))
2218, 21sylbb2 228 . . . . . . . . . . . 12 (∀𝑎𝑟𝑏𝑠 (𝑎𝑃𝑏𝑃) → (𝑟𝑃𝑠𝑃))
2317, 22syl 17 . . . . . . . . . . 11 (∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 ∧ ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → (𝑟𝑃𝑠𝑃))
2414, 23sylbir 225 . . . . . . . . . 10 ((∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 ∧ ∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → (𝑟𝑃𝑠𝑃))
2524expcom 451 . . . . . . . . 9 (∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → (∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)))
2613, 25syl6 35 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑟 ∈ (Idl‘𝑅) ∧ 𝑠 ∈ (Idl‘𝑅))) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → (∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))))
2726ralrimdvva 2968 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idl‘𝑅)) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))))
2827ex 450 . . . . . 6 (𝑅 ∈ RingOps → (𝑃 ∈ (Idl‘𝑅) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)))))
2928adantrd 484 . . . . 5 (𝑅 ∈ RingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)))))
3029imdistand 727 . . . 4 (𝑅 ∈ RingOps → (((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)))))
31 df-3an 1038 . . . 4 ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
32 df-3an 1038 . . . 4 ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))))
3330, 31, 323imtr4g 285 . . 3 (𝑅 ∈ RingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)))))
34 ispridl2.2 . . . 4 𝐻 = (2nd𝑅)
351, 34, 2ispridl 33462 . . 3 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)))))
3633, 35sylibrd 249 . 2 (𝑅 ∈ RingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → 𝑃 ∈ (PrIdl‘𝑅)))
3736imp 445 1 ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))) → 𝑃 ∈ (PrIdl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wss 3555  ran crn 5075  cfv 5847  (class class class)co 6604  1st c1st 7111  2nd c2nd 7112  RingOpscrngo 33322  Idlcidl 33435  PrIdlcpridl 33436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-iota 5810  df-fun 5849  df-fv 5855  df-ov 6607  df-idl 33438  df-pridl 33439
This theorem is referenced by:  ispridlc  33498
  Copyright terms: Public domain W3C validator