MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm3 Structured version   Visualization version   GIF version

Theorem isprm3 15443
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm3 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm3
StepHypRef Expression
1 isprm2 15442 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
2 iman 439 . . . . . . 7 ((𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ (𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))
3 eluz2nn 11764 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
4 nnz 11437 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℕ → 𝑧 ∈ ℤ)
5 dvdsle 15079 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑧𝑃𝑧𝑃))
64, 5sylan 487 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑧𝑃𝑧𝑃))
7 nnge1 11084 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℕ → 1 ≤ 𝑧)
87adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → 1 ≤ 𝑧)
96, 8jctild 565 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑧𝑃 → (1 ≤ 𝑧𝑧𝑃)))
103, 9sylan2 490 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → (𝑧𝑃 → (1 ≤ 𝑧𝑧𝑃)))
11 zre 11419 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
12 nnre 11065 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
13 1re 10077 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℝ
14 leltne 10165 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 1 ≤ 𝑧) → (1 < 𝑧𝑧 ≠ 1))
1513, 14mp3an1 1451 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ ∧ 1 ≤ 𝑧) → (1 < 𝑧𝑧 ≠ 1))
16153adant2 1100 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 1 ≤ 𝑧) → (1 < 𝑧𝑧 ≠ 1))
17163expia 1286 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (1 ≤ 𝑧 → (1 < 𝑧𝑧 ≠ 1)))
18 leltne 10165 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 𝑧𝑃) → (𝑧 < 𝑃𝑃𝑧))
19183expia 1286 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (𝑧𝑃 → (𝑧 < 𝑃𝑃𝑧)))
2017, 19anim12d 585 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧))))
2111, 12, 20syl2an 493 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧))))
22 pm4.38 934 . . . . . . . . . . . . . . . . . 18 (((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧)) → ((1 < 𝑧𝑧 < 𝑃) ↔ (𝑧 ≠ 1 ∧ 𝑃𝑧)))
23 df-ne 2824 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ≠ 1 ↔ ¬ 𝑧 = 1)
24 nesym 2879 . . . . . . . . . . . . . . . . . . . 20 (𝑃𝑧 ↔ ¬ 𝑧 = 𝑃)
2523, 24anbi12i 733 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ≠ 1 ∧ 𝑃𝑧) ↔ (¬ 𝑧 = 1 ∧ ¬ 𝑧 = 𝑃))
26 ioran 510 . . . . . . . . . . . . . . . . . . 19 (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 ∧ ¬ 𝑧 = 𝑃))
2725, 26bitr4i 267 . . . . . . . . . . . . . . . . . 18 ((𝑧 ≠ 1 ∧ 𝑃𝑧) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))
2822, 27syl6bb 276 . . . . . . . . . . . . . . . . 17 (((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧)) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))
2921, 28syl6 35 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
304, 3, 29syl2an 493 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
3110, 30syld 47 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → (𝑧𝑃 → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
3231imp 444 . . . . . . . . . . . . 13 (((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) ∧ 𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))
33 eluzelz 11735 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
34 1z 11445 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℤ
35 zltp1le 11465 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (1 < 𝑧 ↔ (1 + 1) ≤ 𝑧))
3634, 35mpan 706 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℤ → (1 < 𝑧 ↔ (1 + 1) ≤ 𝑧))
37 df-2 11117 . . . . . . . . . . . . . . . . . . . 20 2 = (1 + 1)
3837breq1i 4692 . . . . . . . . . . . . . . . . . . 19 (2 ≤ 𝑧 ↔ (1 + 1) ≤ 𝑧)
3936, 38syl6bbr 278 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℤ → (1 < 𝑧 ↔ 2 ≤ 𝑧))
4039adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (1 < 𝑧 ↔ 2 ≤ 𝑧))
41 zltlem1 11468 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 < 𝑃𝑧 ≤ (𝑃 − 1)))
4240, 41anbi12d 747 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((1 < 𝑧𝑧 < 𝑃) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
43 peano2zm 11458 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
44 2z 11447 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
45 elfz 12370 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 2 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) → (𝑧 ∈ (2...(𝑃 − 1)) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
4644, 45mp3an2 1452 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) → (𝑧 ∈ (2...(𝑃 − 1)) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
4743, 46sylan2 490 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 ∈ (2...(𝑃 − 1)) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
4842, 47bitr4d 271 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((1 < 𝑧𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
494, 33, 48syl2an 493 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → ((1 < 𝑧𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
5049adantr 480 . . . . . . . . . . . . 13 (((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) ∧ 𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
5132, 50bitr3d 270 . . . . . . . . . . . 12 (((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) ∧ 𝑧𝑃) → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
5251anasss 680 . . . . . . . . . . 11 ((𝑧 ∈ ℕ ∧ (𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃)) → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
5352expcom 450 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → (𝑧 ∈ ℕ → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1)))))
5453pm5.32d 672 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∈ (2...(𝑃 − 1)))))
55 fzssuz 12420 . . . . . . . . . . . . 13 (2...(𝑃 − 1)) ⊆ (ℤ‘2)
56 2eluzge1 11772 . . . . . . . . . . . . . 14 2 ∈ (ℤ‘1)
57 uzss 11746 . . . . . . . . . . . . . 14 (2 ∈ (ℤ‘1) → (ℤ‘2) ⊆ (ℤ‘1))
5856, 57ax-mp 5 . . . . . . . . . . . . 13 (ℤ‘2) ⊆ (ℤ‘1)
5955, 58sstri 3645 . . . . . . . . . . . 12 (2...(𝑃 − 1)) ⊆ (ℤ‘1)
60 nnuz 11761 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
6159, 60sseqtr4i 3671 . . . . . . . . . . 11 (2...(𝑃 − 1)) ⊆ ℕ
6261sseli 3632 . . . . . . . . . 10 (𝑧 ∈ (2...(𝑃 − 1)) → 𝑧 ∈ ℕ)
6362pm4.71ri 666 . . . . . . . . 9 (𝑧 ∈ (2...(𝑃 − 1)) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∈ (2...(𝑃 − 1))))
6454, 63syl6bbr 278 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
6564notbid 307 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → (¬ (𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ 𝑧 ∈ (2...(𝑃 − 1))))
662, 65syl5bb 272 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ 𝑧 ∈ (2...(𝑃 − 1))))
6766pm5.74da 723 . . . . 5 (𝑃 ∈ (ℤ‘2) → ((𝑧𝑃 → (𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧𝑃 → ¬ 𝑧 ∈ (2...(𝑃 − 1)))))
68 bi2.04 375 . . . . 5 ((𝑧𝑃 → (𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
69 con2b 348 . . . . 5 ((𝑧𝑃 → ¬ 𝑧 ∈ (2...(𝑃 − 1))) ↔ (𝑧 ∈ (2...(𝑃 − 1)) → ¬ 𝑧𝑃))
7067, 68, 693bitr3g 302 . . . 4 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧 ∈ (2...(𝑃 − 1)) → ¬ 𝑧𝑃)))
7170ralbidv2 3013 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
7271pm5.32i 670 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
731, 72bitri 264 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wss 3607   class class class wbr 4685  cfv 5926  (class class class)co 6690  cr 9973  1c1 9975   + caddc 9977   < clt 10112  cle 10113  cmin 10304  cn 11058  2c2 11108  cz 11415  cuz 11725  ...cfz 12364  cdvds 15027  cprime 15432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-prm 15433
This theorem is referenced by:  prmind2  15445  2prm  15452  3prm  15453  ncoprmlnprm  15483  wilth  24842  mersenne  24997  chtvalz  30835
  Copyright terms: Public domain W3C validator