MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm6 Structured version   Visualization version   GIF version

Theorem isprm6 16050
Description: A number is prime iff it satisfies Euclid's lemma euclemma 16049. (Contributed by Mario Carneiro, 6-Sep-2015.)
Assertion
Ref Expression
isprm6 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))))
Distinct variable group:   𝑥,𝑦,𝑃

Proof of Theorem isprm6
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 prmuz2 16032 . . 3 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2 euclemma 16049 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑃 ∥ (𝑥 · 𝑦) ↔ (𝑃𝑥𝑃𝑦)))
323expb 1115 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑃 ∥ (𝑥 · 𝑦) ↔ (𝑃𝑥𝑃𝑦)))
43biimpd 231 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦)))
54ralrimivva 3189 . . 3 (𝑃 ∈ ℙ → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦)))
61, 5jca 514 . 2 (𝑃 ∈ ℙ → (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))))
7 simpl 485 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → 𝑃 ∈ (ℤ‘2))
8 eluz2nn 12276 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
98adantr 483 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℕ)
109nnzd 12078 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℤ)
11 iddvds 15615 . . . . . . . . . . 11 (𝑃 ∈ ℤ → 𝑃𝑃)
1210, 11syl 17 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃𝑃)
13 nncn 11638 . . . . . . . . . . . 12 (𝑃 ∈ ℕ → 𝑃 ∈ ℂ)
149, 13syl 17 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℂ)
15 nncn 11638 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
1615ad2antrl 726 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℂ)
17 nnne0 11663 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ≠ 0)
1817ad2antrl 726 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ≠ 0)
1914, 16, 18divcan1d 11409 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 / 𝑧) · 𝑧) = 𝑃)
2012, 19breqtrrd 5085 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧))
2120adantr 483 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧))
22 simprr 771 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧𝑃)
23 simprl 769 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℕ)
24 nndivdvds 15608 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧𝑃 ↔ (𝑃 / 𝑧) ∈ ℕ))
259, 23, 24syl2anc 586 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧𝑃 ↔ (𝑃 / 𝑧) ∈ ℕ))
2622, 25mpbid 234 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 / 𝑧) ∈ ℕ)
2726nnzd 12078 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 / 𝑧) ∈ ℤ)
28 nnz 11996 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ∈ ℤ)
2928ad2antrl 726 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℤ)
3027, 29jca 514 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 / 𝑧) ∈ ℤ ∧ 𝑧 ∈ ℤ))
31 oveq1 7155 . . . . . . . . . . . 12 (𝑥 = (𝑃 / 𝑧) → (𝑥 · 𝑦) = ((𝑃 / 𝑧) · 𝑦))
3231breq2d 5069 . . . . . . . . . . 11 (𝑥 = (𝑃 / 𝑧) → (𝑃 ∥ (𝑥 · 𝑦) ↔ 𝑃 ∥ ((𝑃 / 𝑧) · 𝑦)))
33 breq2 5061 . . . . . . . . . . . 12 (𝑥 = (𝑃 / 𝑧) → (𝑃𝑥𝑃 ∥ (𝑃 / 𝑧)))
3433orbi1d 913 . . . . . . . . . . 11 (𝑥 = (𝑃 / 𝑧) → ((𝑃𝑥𝑃𝑦) ↔ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦)))
3532, 34imbi12d 347 . . . . . . . . . 10 (𝑥 = (𝑃 / 𝑧) → ((𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦)) ↔ (𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦))))
36 oveq2 7156 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ((𝑃 / 𝑧) · 𝑦) = ((𝑃 / 𝑧) · 𝑧))
3736breq2d 5069 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) ↔ 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧)))
38 breq2 5061 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑃𝑦𝑃𝑧))
3938orbi2d 912 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦) ↔ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)))
4037, 39imbi12d 347 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦)) ↔ (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧))))
4135, 40rspc2va 3632 . . . . . . . . 9 ((((𝑃 / 𝑧) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)))
4230, 41sylan 582 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)))
4321, 42mpd 15 . . . . . . 7 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧))
44 dvdsle 15652 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ (𝑃 / 𝑧) ∈ ℕ) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑃 ≤ (𝑃 / 𝑧)))
4510, 26, 44syl2anc 586 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑃 ≤ (𝑃 / 𝑧)))
4614div1d 11400 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 / 1) = 𝑃)
4746breq1d 5067 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 / 1) ≤ (𝑃 / 𝑧) ↔ 𝑃 ≤ (𝑃 / 𝑧)))
4845, 47sylibrd 261 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → (𝑃 / 1) ≤ (𝑃 / 𝑧)))
49 nnrp 12392 . . . . . . . . . . . . . 14 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ+)
5049rpregt0d 12429 . . . . . . . . . . . . 13 (𝑧 ∈ ℕ → (𝑧 ∈ ℝ ∧ 0 < 𝑧))
5150ad2antrl 726 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 ∈ ℝ ∧ 0 < 𝑧))
52 1rp 12385 . . . . . . . . . . . . 13 1 ∈ ℝ+
53 rpregt0 12395 . . . . . . . . . . . . 13 (1 ∈ ℝ+ → (1 ∈ ℝ ∧ 0 < 1))
5452, 53mp1i 13 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (1 ∈ ℝ ∧ 0 < 1))
55 nnrp 12392 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
569, 55syl 17 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℝ+)
5756rpregt0d 12429 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∈ ℝ ∧ 0 < 𝑃))
58 lediv2 11522 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ∧ 0 < 𝑧) ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (𝑧 ≤ 1 ↔ (𝑃 / 1) ≤ (𝑃 / 𝑧)))
5951, 54, 57, 58syl3anc 1366 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 ≤ 1 ↔ (𝑃 / 1) ≤ (𝑃 / 𝑧)))
6048, 59sylibrd 261 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑧 ≤ 1))
61 nnle1eq1 11659 . . . . . . . . . . 11 (𝑧 ∈ ℕ → (𝑧 ≤ 1 ↔ 𝑧 = 1))
6261ad2antrl 726 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 ≤ 1 ↔ 𝑧 = 1))
6360, 62sylibd 241 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑧 = 1))
64 nnnn0 11896 . . . . . . . . . . . . 13 (𝑧 ∈ ℕ → 𝑧 ∈ ℕ0)
6564ad2antrl 726 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℕ0)
6665adantr 483 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑧 ∈ ℕ0)
67 nnnn0 11896 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
689, 67syl 17 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℕ0)
6968adantr 483 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑃 ∈ ℕ0)
70 simplrr 776 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑧𝑃)
71 simpr 487 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑃𝑧)
72 dvdseq 15656 . . . . . . . . . . 11 (((𝑧 ∈ ℕ0𝑃 ∈ ℕ0) ∧ (𝑧𝑃𝑃𝑧)) → 𝑧 = 𝑃)
7366, 69, 70, 71, 72syl22anc 836 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑧 = 𝑃)
7473ex 415 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃𝑧𝑧 = 𝑃))
7563, 74orim12d 961 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧) → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
7675imp 409 . . . . . . 7 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)) → (𝑧 = 1 ∨ 𝑧 = 𝑃))
7743, 76syldan 593 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑧 = 1 ∨ 𝑧 = 𝑃))
7877an32s 650 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 = 1 ∨ 𝑧 = 𝑃))
7978expr 459 . . . 4 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) ∧ 𝑧 ∈ ℕ) → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
8079ralrimiva 3180 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
81 isprm2 16018 . . 3 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
827, 80, 81sylanbrc 585 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → 𝑃 ∈ ℙ)
836, 82impbii 211 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1531  wcel 2108  wne 3014  wral 3136   class class class wbr 5057  cfv 6348  (class class class)co 7148  cc 10527  cr 10528  0cc0 10529  1c1 10530   · cmul 10534   < clt 10667  cle 10668   / cdiv 11289  cn 11630  2c2 11684  0cn0 11889  cz 11973  cuz 12235  +crp 12381  cdvds 15599  cprime 16007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15836  df-prm 16008
This theorem is referenced by:  domnchr  20671
  Copyright terms: Public domain W3C validator