MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm6 Structured version   Visualization version   GIF version

Theorem isprm6 15361
Description: A number is prime iff it satisfies Euclid's lemma euclemma 15360. (Contributed by Mario Carneiro, 6-Sep-2015.)
Assertion
Ref Expression
isprm6 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))))
Distinct variable group:   𝑥,𝑦,𝑃

Proof of Theorem isprm6
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 prmuz2 15343 . . 3 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2 euclemma 15360 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑃 ∥ (𝑥 · 𝑦) ↔ (𝑃𝑥𝑃𝑦)))
323expb 1263 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑃 ∥ (𝑥 · 𝑦) ↔ (𝑃𝑥𝑃𝑦)))
43biimpd 219 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦)))
54ralrimivva 2966 . . 3 (𝑃 ∈ ℙ → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦)))
61, 5jca 554 . 2 (𝑃 ∈ ℙ → (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))))
7 simpl 473 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → 𝑃 ∈ (ℤ‘2))
8 eluz2nn 11678 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
98adantr 481 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℕ)
109nnzd 11433 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℤ)
11 iddvds 14930 . . . . . . . . . . 11 (𝑃 ∈ ℤ → 𝑃𝑃)
1210, 11syl 17 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃𝑃)
13 nncn 10980 . . . . . . . . . . . 12 (𝑃 ∈ ℕ → 𝑃 ∈ ℂ)
149, 13syl 17 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℂ)
15 nncn 10980 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
1615ad2antrl 763 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℂ)
17 nnne0 11005 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ≠ 0)
1817ad2antrl 763 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ≠ 0)
1914, 16, 18divcan1d 10754 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 / 𝑧) · 𝑧) = 𝑃)
2012, 19breqtrrd 4646 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧))
2120adantr 481 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧))
22 simprr 795 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧𝑃)
23 simprl 793 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℕ)
24 nndivdvds 14924 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧𝑃 ↔ (𝑃 / 𝑧) ∈ ℕ))
259, 23, 24syl2anc 692 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧𝑃 ↔ (𝑃 / 𝑧) ∈ ℕ))
2622, 25mpbid 222 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 / 𝑧) ∈ ℕ)
2726nnzd 11433 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 / 𝑧) ∈ ℤ)
28 nnz 11351 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ∈ ℤ)
2928ad2antrl 763 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℤ)
3027, 29jca 554 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 / 𝑧) ∈ ℤ ∧ 𝑧 ∈ ℤ))
31 oveq1 6617 . . . . . . . . . . . 12 (𝑥 = (𝑃 / 𝑧) → (𝑥 · 𝑦) = ((𝑃 / 𝑧) · 𝑦))
3231breq2d 4630 . . . . . . . . . . 11 (𝑥 = (𝑃 / 𝑧) → (𝑃 ∥ (𝑥 · 𝑦) ↔ 𝑃 ∥ ((𝑃 / 𝑧) · 𝑦)))
33 breq2 4622 . . . . . . . . . . . 12 (𝑥 = (𝑃 / 𝑧) → (𝑃𝑥𝑃 ∥ (𝑃 / 𝑧)))
3433orbi1d 738 . . . . . . . . . . 11 (𝑥 = (𝑃 / 𝑧) → ((𝑃𝑥𝑃𝑦) ↔ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦)))
3532, 34imbi12d 334 . . . . . . . . . 10 (𝑥 = (𝑃 / 𝑧) → ((𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦)) ↔ (𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦))))
36 oveq2 6618 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ((𝑃 / 𝑧) · 𝑦) = ((𝑃 / 𝑧) · 𝑧))
3736breq2d 4630 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) ↔ 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧)))
38 breq2 4622 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑃𝑦𝑃𝑧))
3938orbi2d 737 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦) ↔ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)))
4037, 39imbi12d 334 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦)) ↔ (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧))))
4135, 40rspc2va 3311 . . . . . . . . 9 ((((𝑃 / 𝑧) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)))
4230, 41sylan 488 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)))
4321, 42mpd 15 . . . . . . 7 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧))
44 dvdsle 14967 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ (𝑃 / 𝑧) ∈ ℕ) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑃 ≤ (𝑃 / 𝑧)))
4510, 26, 44syl2anc 692 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑃 ≤ (𝑃 / 𝑧)))
4614div1d 10745 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 / 1) = 𝑃)
4746breq1d 4628 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 / 1) ≤ (𝑃 / 𝑧) ↔ 𝑃 ≤ (𝑃 / 𝑧)))
4845, 47sylibrd 249 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → (𝑃 / 1) ≤ (𝑃 / 𝑧)))
49 nnrp 11794 . . . . . . . . . . . . . 14 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ+)
5049rpregt0d 11830 . . . . . . . . . . . . 13 (𝑧 ∈ ℕ → (𝑧 ∈ ℝ ∧ 0 < 𝑧))
5150ad2antrl 763 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 ∈ ℝ ∧ 0 < 𝑧))
52 1rp 11788 . . . . . . . . . . . . 13 1 ∈ ℝ+
53 rpregt0 11798 . . . . . . . . . . . . 13 (1 ∈ ℝ+ → (1 ∈ ℝ ∧ 0 < 1))
5452, 53mp1i 13 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (1 ∈ ℝ ∧ 0 < 1))
55 nnrp 11794 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
569, 55syl 17 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℝ+)
5756rpregt0d 11830 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∈ ℝ ∧ 0 < 𝑃))
58 lediv2 10865 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ∧ 0 < 𝑧) ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (𝑧 ≤ 1 ↔ (𝑃 / 1) ≤ (𝑃 / 𝑧)))
5951, 54, 57, 58syl3anc 1323 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 ≤ 1 ↔ (𝑃 / 1) ≤ (𝑃 / 𝑧)))
6048, 59sylibrd 249 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑧 ≤ 1))
61 nnle1eq1 11000 . . . . . . . . . . 11 (𝑧 ∈ ℕ → (𝑧 ≤ 1 ↔ 𝑧 = 1))
6261ad2antrl 763 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 ≤ 1 ↔ 𝑧 = 1))
6360, 62sylibd 229 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑧 = 1))
64 nnnn0 11251 . . . . . . . . . . . . 13 (𝑧 ∈ ℕ → 𝑧 ∈ ℕ0)
6564ad2antrl 763 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℕ0)
6665adantr 481 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑧 ∈ ℕ0)
67 nnnn0 11251 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
689, 67syl 17 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℕ0)
6968adantr 481 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑃 ∈ ℕ0)
70 simplrr 800 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑧𝑃)
71 simpr 477 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑃𝑧)
72 dvdseq 14971 . . . . . . . . . . 11 (((𝑧 ∈ ℕ0𝑃 ∈ ℕ0) ∧ (𝑧𝑃𝑃𝑧)) → 𝑧 = 𝑃)
7366, 69, 70, 71, 72syl22anc 1324 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑧 = 𝑃)
7473ex 450 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃𝑧𝑧 = 𝑃))
7563, 74orim12d 882 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧) → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
7675imp 445 . . . . . . 7 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)) → (𝑧 = 1 ∨ 𝑧 = 𝑃))
7743, 76syldan 487 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑧 = 1 ∨ 𝑧 = 𝑃))
7877an32s 845 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 = 1 ∨ 𝑧 = 𝑃))
7978expr 642 . . . 4 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) ∧ 𝑧 ∈ ℕ) → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
8079ralrimiva 2961 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
81 isprm2 15330 . . 3 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
827, 80, 81sylanbrc 697 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → 𝑃 ∈ ℙ)
836, 82impbii 199 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907   class class class wbr 4618  cfv 5852  (class class class)co 6610  cc 9886  cr 9887  0cc0 9888  1c1 9889   · cmul 9893   < clt 10026  cle 10027   / cdiv 10636  cn 10972  2c2 11022  0cn0 11244  cz 11329  cuz 11639  +crp 11784  cdvds 14918  cprime 15320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-inf 8301  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-fl 12541  df-mod 12617  df-seq 12750  df-exp 12809  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-dvds 14919  df-gcd 15152  df-prm 15321
This theorem is referenced by:  domnchr  19812
  Copyright terms: Public domain W3C validator