![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isprrngo | Structured version Visualization version GIF version |
Description: The predicate "is a prime ring". (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
isprrng.1 | ⊢ 𝐺 = (1st ‘𝑅) |
isprrng.2 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
isprrngo | ⊢ (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6352 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = (1st ‘𝑅)) | |
2 | isprrng.1 | . . . . . . 7 ⊢ 𝐺 = (1st ‘𝑅) | |
3 | 1, 2 | syl6eqr 2812 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = 𝐺) |
4 | 3 | fveq2d 6356 | . . . . 5 ⊢ (𝑟 = 𝑅 → (GId‘(1st ‘𝑟)) = (GId‘𝐺)) |
5 | isprrng.2 | . . . . 5 ⊢ 𝑍 = (GId‘𝐺) | |
6 | 4, 5 | syl6eqr 2812 | . . . 4 ⊢ (𝑟 = 𝑅 → (GId‘(1st ‘𝑟)) = 𝑍) |
7 | 6 | sneqd 4333 | . . 3 ⊢ (𝑟 = 𝑅 → {(GId‘(1st ‘𝑟))} = {𝑍}) |
8 | fveq2 6352 | . . 3 ⊢ (𝑟 = 𝑅 → (PrIdl‘𝑟) = (PrIdl‘𝑅)) | |
9 | 7, 8 | eleq12d 2833 | . 2 ⊢ (𝑟 = 𝑅 → ({(GId‘(1st ‘𝑟))} ∈ (PrIdl‘𝑟) ↔ {𝑍} ∈ (PrIdl‘𝑅))) |
10 | df-prrngo 34160 | . 2 ⊢ PrRing = {𝑟 ∈ RingOps ∣ {(GId‘(1st ‘𝑟))} ∈ (PrIdl‘𝑟)} | |
11 | 9, 10 | elrab2 3507 | 1 ⊢ (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 {csn 4321 ‘cfv 6049 1st c1st 7331 GIdcgi 27653 RingOpscrngo 34006 PrIdlcpridl 34120 PrRingcprrng 34158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 df-prrngo 34160 |
This theorem is referenced by: prrngorngo 34163 smprngopr 34164 isdmn3 34186 |
Copyright terms: Public domain | W3C validator |