Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubcl2N Structured version   Visualization version   GIF version

Theorem ispsubcl2N 37077
Description: Alternate predicate for "is a closed projective subspace". Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapsubcl.b 𝐵 = (Base‘𝐾)
pmapsubcl.m 𝑀 = (pmap‘𝐾)
pmapsubcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
ispsubcl2N (𝐾 ∈ HL → (𝑋𝐶 ↔ ∃𝑦𝐵 𝑋 = (𝑀𝑦)))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐾   𝑦,𝑀   𝑦,𝑋
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ispsubcl2N
StepHypRef Expression
1 eqid 2821 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
2 eqid 2821 . . 3 (⊥𝑃𝐾) = (⊥𝑃𝐾)
3 pmapsubcl.c . . 3 𝐶 = (PSubCl‘𝐾)
41, 2, 3ispsubclN 37067 . 2 (𝐾 ∈ HL → (𝑋𝐶 ↔ (𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋)))
5 hlop 36492 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
65adantr 483 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → 𝐾 ∈ OP)
7 hlclat 36488 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ CLat)
87adantr 483 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → 𝐾 ∈ CLat)
91, 2polssatN 37038 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘𝑋) ⊆ (Atoms‘𝐾))
10 pmapsubcl.b . . . . . . . . . . 11 𝐵 = (Base‘𝐾)
1110, 1atssbase 36420 . . . . . . . . . 10 (Atoms‘𝐾) ⊆ 𝐵
129, 11sstrdi 3978 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘𝑋) ⊆ 𝐵)
13 eqid 2821 . . . . . . . . . 10 (lub‘𝐾) = (lub‘𝐾)
1410, 13clatlubcl 17716 . . . . . . . . 9 ((𝐾 ∈ CLat ∧ ((⊥𝑃𝐾)‘𝑋) ⊆ 𝐵) → ((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)) ∈ 𝐵)
158, 12, 14syl2anc 586 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)) ∈ 𝐵)
16 eqid 2821 . . . . . . . . 9 (oc‘𝐾) = (oc‘𝐾)
1710, 16opoccl 36324 . . . . . . . 8 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)) ∈ 𝐵) → ((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) ∈ 𝐵)
186, 15, 17syl2anc 586 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) ∈ 𝐵)
1918ex 415 . . . . . 6 (𝐾 ∈ HL → (𝑋 ⊆ (Atoms‘𝐾) → ((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) ∈ 𝐵))
2019adantrd 494 . . . . 5 (𝐾 ∈ HL → ((𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋) → ((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) ∈ 𝐵))
21 pmapsubcl.m . . . . . . . . . 10 𝑀 = (pmap‘𝐾)
2213, 16, 1, 21, 2polval2N 37036 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ((⊥𝑃𝐾)‘𝑋) ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))))
239, 22syldan 593 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))))
2423ex 415 . . . . . . 7 (𝐾 ∈ HL → (𝑋 ⊆ (Atoms‘𝐾) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))))))
25 eqeq1 2825 . . . . . . . 8 (((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋 → (((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))) ↔ 𝑋 = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))))))
2625biimpcd 251 . . . . . . 7 (((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))) → (((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋𝑋 = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))))))
2724, 26syl6 35 . . . . . 6 (𝐾 ∈ HL → (𝑋 ⊆ (Atoms‘𝐾) → (((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋𝑋 = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))))))
2827impd 413 . . . . 5 (𝐾 ∈ HL → ((𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋) → 𝑋 = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))))))
2920, 28jcad 515 . . . 4 (𝐾 ∈ HL → ((𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋) → (((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) ∈ 𝐵𝑋 = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))))))
30 fveq2 6664 . . . . 5 (𝑦 = ((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) → (𝑀𝑦) = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))))
3130rspceeqv 3637 . . . 4 ((((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) ∈ 𝐵𝑋 = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))))) → ∃𝑦𝐵 𝑋 = (𝑀𝑦))
3229, 31syl6 35 . . 3 (𝐾 ∈ HL → ((𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋) → ∃𝑦𝐵 𝑋 = (𝑀𝑦)))
3310, 1, 21pmapssat 36889 . . . . 5 ((𝐾 ∈ HL ∧ 𝑦𝐵) → (𝑀𝑦) ⊆ (Atoms‘𝐾))
3410, 21, 22polpmapN 37043 . . . . 5 ((𝐾 ∈ HL ∧ 𝑦𝐵) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑦))) = (𝑀𝑦))
35 sseq1 3991 . . . . . . 7 (𝑋 = (𝑀𝑦) → (𝑋 ⊆ (Atoms‘𝐾) ↔ (𝑀𝑦) ⊆ (Atoms‘𝐾)))
36 2fveq3 6669 . . . . . . . 8 (𝑋 = (𝑀𝑦) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑦))))
37 id 22 . . . . . . . 8 (𝑋 = (𝑀𝑦) → 𝑋 = (𝑀𝑦))
3836, 37eqeq12d 2837 . . . . . . 7 (𝑋 = (𝑀𝑦) → (((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋 ↔ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑦))) = (𝑀𝑦)))
3935, 38anbi12d 632 . . . . . 6 (𝑋 = (𝑀𝑦) → ((𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋) ↔ ((𝑀𝑦) ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑦))) = (𝑀𝑦))))
4039biimprcd 252 . . . . 5 (((𝑀𝑦) ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑦))) = (𝑀𝑦)) → (𝑋 = (𝑀𝑦) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋)))
4133, 34, 40syl2anc 586 . . . 4 ((𝐾 ∈ HL ∧ 𝑦𝐵) → (𝑋 = (𝑀𝑦) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋)))
4241rexlimdva 3284 . . 3 (𝐾 ∈ HL → (∃𝑦𝐵 𝑋 = (𝑀𝑦) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋)))
4332, 42impbid 214 . 2 (𝐾 ∈ HL → ((𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋) ↔ ∃𝑦𝐵 𝑋 = (𝑀𝑦)))
444, 43bitrd 281 1 (𝐾 ∈ HL → (𝑋𝐶 ↔ ∃𝑦𝐵 𝑋 = (𝑀𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wrex 3139  wss 3935  cfv 6349  Basecbs 16477  occoc 16567  lubclub 17546  CLatccla 17711  OPcops 36302  Atomscatm 36393  HLchlt 36480  pmapcpmap 36627  𝑃cpolN 37032  PSubClcpscN 37064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-riotaBAD 36083
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-undef 7933  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-p1 17644  df-lat 17650  df-clat 17712  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-psubsp 36633  df-pmap 36634  df-polarityN 37033  df-psubclN 37065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator