MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrhmd Structured version   Visualization version   GIF version

Theorem isrhmd 18494
Description: Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
isrhmd.b 𝐵 = (Base‘𝑅)
isrhmd.o 1 = (1r𝑅)
isrhmd.n 𝑁 = (1r𝑆)
isrhmd.t · = (.r𝑅)
isrhmd.u × = (.r𝑆)
isrhmd.r (𝜑𝑅 ∈ Ring)
isrhmd.s (𝜑𝑆 ∈ Ring)
isrhmd.ho (𝜑 → (𝐹1 ) = 𝑁)
isrhmd.ht ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
isrhmd.c 𝐶 = (Base‘𝑆)
isrhmd.p + = (+g𝑅)
isrhmd.q = (+g𝑆)
isrhmd.f (𝜑𝐹:𝐵𝐶)
isrhmd.hp ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
Assertion
Ref Expression
isrhmd (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   × (𝑥,𝑦)   1 (𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem isrhmd
StepHypRef Expression
1 isrhmd.b . 2 𝐵 = (Base‘𝑅)
2 isrhmd.o . 2 1 = (1r𝑅)
3 isrhmd.n . 2 𝑁 = (1r𝑆)
4 isrhmd.t . 2 · = (.r𝑅)
5 isrhmd.u . 2 × = (.r𝑆)
6 isrhmd.r . 2 (𝜑𝑅 ∈ Ring)
7 isrhmd.s . 2 (𝜑𝑆 ∈ Ring)
8 isrhmd.ho . 2 (𝜑 → (𝐹1 ) = 𝑁)
9 isrhmd.ht . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
10 isrhmd.c . . 3 𝐶 = (Base‘𝑆)
11 isrhmd.p . . 3 + = (+g𝑅)
12 isrhmd.q . . 3 = (+g𝑆)
13 ringgrp 18317 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
146, 13syl 17 . . 3 (𝜑𝑅 ∈ Grp)
15 ringgrp 18317 . . . 4 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
167, 15syl 17 . . 3 (𝜑𝑆 ∈ Grp)
17 isrhmd.f . . 3 (𝜑𝐹:𝐵𝐶)
18 isrhmd.hp . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
191, 10, 11, 12, 14, 16, 17, 18isghmd 17434 . 2 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
201, 2, 3, 4, 5, 6, 7, 8, 9, 19isrhm2d 18493 1 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1975  wf 5782  cfv 5786  (class class class)co 6523  Basecbs 15637  +gcplusg 15710  .rcmulr 15711  Grpcgrp 17187  1rcur 18266  Ringcrg 18312   RingHom crh 18477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-er 7602  df-map 7719  df-en 7815  df-dom 7816  df-sdom 7817  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-2 10922  df-ndx 15640  df-slot 15641  df-base 15642  df-sets 15643  df-plusg 15723  df-0g 15867  df-mhm 17100  df-ghm 17423  df-mgp 18255  df-ur 18267  df-ring 18314  df-rnghom 18480
This theorem is referenced by:  issrngd  18626  evlslem1  19278  qqhrhm  29163
  Copyright terms: Public domain W3C validator