Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrngod Structured version   Visualization version   GIF version

Theorem isrngod 35170
Description: Conditions that determine a ring. (Changed label from isringd 19329 to isrngod 35170-NM 2-Aug-2013.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
isringod.1 (𝜑𝐺 ∈ AbelOp)
isringod.2 (𝜑𝑋 = ran 𝐺)
isringod.3 (𝜑𝐻:(𝑋 × 𝑋)⟶𝑋)
isringod.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
isringod.5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)))
isringod.6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))
isringod.7 (𝜑𝑈𝑋)
isringod.8 ((𝜑𝑦𝑋) → (𝑈𝐻𝑦) = 𝑦)
isringod.9 ((𝜑𝑦𝑋) → (𝑦𝐻𝑈) = 𝑦)
Assertion
Ref Expression
isrngod (𝜑 → ⟨𝐺, 𝐻⟩ ∈ RingOps)
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑈,𝑦
Allowed substitution hint:   𝑈(𝑧)

Proof of Theorem isrngod
StepHypRef Expression
1 isringod.1 . . 3 (𝜑𝐺 ∈ AbelOp)
2 isringod.3 . . . 4 (𝜑𝐻:(𝑋 × 𝑋)⟶𝑋)
3 isringod.2 . . . . . 6 (𝜑𝑋 = ran 𝐺)
43sqxpeqd 5581 . . . . 5 (𝜑 → (𝑋 × 𝑋) = (ran 𝐺 × ran 𝐺))
54, 3feq23d 6503 . . . 4 (𝜑 → (𝐻:(𝑋 × 𝑋)⟶𝑋𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺))
62, 5mpbid 234 . . 3 (𝜑𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺)
7 isringod.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
8 isringod.5 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)))
9 isringod.6 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))
107, 8, 93jca 1124 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))
1110ralrimivvva 3192 . . . . 5 (𝜑 → ∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))
123raleqdv 3415 . . . . . . 7 (𝜑 → (∀𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ↔ ∀𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))))
133, 12raleqbidv 3401 . . . . . 6 (𝜑 → (∀𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ↔ ∀𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))))
143, 13raleqbidv 3401 . . . . 5 (𝜑 → (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ↔ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))))
1511, 14mpbid 234 . . . 4 (𝜑 → ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))
16 isringod.7 . . . . . 6 (𝜑𝑈𝑋)
17 isringod.8 . . . . . . . 8 ((𝜑𝑦𝑋) → (𝑈𝐻𝑦) = 𝑦)
18 isringod.9 . . . . . . . 8 ((𝜑𝑦𝑋) → (𝑦𝐻𝑈) = 𝑦)
1917, 18jca 514 . . . . . . 7 ((𝜑𝑦𝑋) → ((𝑈𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑈) = 𝑦))
2019ralrimiva 3182 . . . . . 6 (𝜑 → ∀𝑦𝑋 ((𝑈𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑈) = 𝑦))
21 oveq1 7157 . . . . . . . . 9 (𝑥 = 𝑈 → (𝑥𝐻𝑦) = (𝑈𝐻𝑦))
2221eqeq1d 2823 . . . . . . . 8 (𝑥 = 𝑈 → ((𝑥𝐻𝑦) = 𝑦 ↔ (𝑈𝐻𝑦) = 𝑦))
2322ovanraleqv 7174 . . . . . . 7 (𝑥 = 𝑈 → (∀𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∀𝑦𝑋 ((𝑈𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑈) = 𝑦)))
2423rspcev 3622 . . . . . 6 ((𝑈𝑋 ∧ ∀𝑦𝑋 ((𝑈𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑈) = 𝑦)) → ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))
2516, 20, 24syl2anc 586 . . . . 5 (𝜑 → ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))
263raleqdv 3415 . . . . . 6 (𝜑 → (∀𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∀𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
273, 26rexeqbidv 3402 . . . . 5 (𝜑 → (∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
2825, 27mpbid 234 . . . 4 (𝜑 → ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))
2915, 28jca 514 . . 3 (𝜑 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
301, 6, 29jca31 517 . 2 (𝜑 → ((𝐺 ∈ AbelOp ∧ 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
31 rnexg 7608 . . . . . 6 (𝐺 ∈ AbelOp → ran 𝐺 ∈ V)
321, 31syl 17 . . . . 5 (𝜑 → ran 𝐺 ∈ V)
3332, 32xpexd 7468 . . . 4 (𝜑 → (ran 𝐺 × ran 𝐺) ∈ V)
34 fex 6983 . . . 4 ((𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ (ran 𝐺 × ran 𝐺) ∈ V) → 𝐻 ∈ V)
356, 33, 34syl2anc 586 . . 3 (𝜑𝐻 ∈ V)
36 eqid 2821 . . . 4 ran 𝐺 = ran 𝐺
3736isrngo 35169 . . 3 (𝐻 ∈ V → (⟨𝐺, 𝐻⟩ ∈ RingOps ↔ ((𝐺 ∈ AbelOp ∧ 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))))
3835, 37syl 17 . 2 (𝜑 → (⟨𝐺, 𝐻⟩ ∈ RingOps ↔ ((𝐺 ∈ AbelOp ∧ 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))))
3930, 38mpbird 259 1 (𝜑 → ⟨𝐺, 𝐻⟩ ∈ RingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  Vcvv 3494  cop 4566   × cxp 5547  ran crn 5550  wf 6345  (class class class)co 7150  AbelOpcablo 28315  RingOpscrngo 35166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-rngo 35167
This theorem is referenced by:  iscringd  35270
  Copyright terms: Public domain W3C validator