Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrngod Structured version   Visualization version   GIF version

Theorem isrngod 33827
Description: Conditions that determine a ring. (Changed label from isringd 18631 to isrngod 33827-NM 2-Aug-2013.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
isringod.1 (𝜑𝐺 ∈ AbelOp)
isringod.2 (𝜑𝑋 = ran 𝐺)
isringod.3 (𝜑𝐻:(𝑋 × 𝑋)⟶𝑋)
isringod.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
isringod.5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)))
isringod.6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))
isringod.7 (𝜑𝑈𝑋)
isringod.8 ((𝜑𝑦𝑋) → (𝑈𝐻𝑦) = 𝑦)
isringod.9 ((𝜑𝑦𝑋) → (𝑦𝐻𝑈) = 𝑦)
Assertion
Ref Expression
isrngod (𝜑 → ⟨𝐺, 𝐻⟩ ∈ RingOps)
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑈,𝑦
Allowed substitution hint:   𝑈(𝑧)

Proof of Theorem isrngod
StepHypRef Expression
1 isringod.1 . . 3 (𝜑𝐺 ∈ AbelOp)
2 isringod.3 . . . 4 (𝜑𝐻:(𝑋 × 𝑋)⟶𝑋)
3 isringod.2 . . . . . 6 (𝜑𝑋 = ran 𝐺)
43sqxpeqd 5175 . . . . 5 (𝜑 → (𝑋 × 𝑋) = (ran 𝐺 × ran 𝐺))
54, 3feq23d 6078 . . . 4 (𝜑 → (𝐻:(𝑋 × 𝑋)⟶𝑋𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺))
62, 5mpbid 222 . . 3 (𝜑𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺)
7 isringod.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
8 isringod.5 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)))
9 isringod.6 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))
107, 8, 93jca 1261 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))
1110ralrimivvva 3001 . . . . 5 (𝜑 → ∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))
123raleqdv 3174 . . . . . . 7 (𝜑 → (∀𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ↔ ∀𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))))
133, 12raleqbidv 3182 . . . . . 6 (𝜑 → (∀𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ↔ ∀𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))))
143, 13raleqbidv 3182 . . . . 5 (𝜑 → (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ↔ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))))
1511, 14mpbid 222 . . . 4 (𝜑 → ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))
16 isringod.7 . . . . . 6 (𝜑𝑈𝑋)
17 isringod.8 . . . . . . . 8 ((𝜑𝑦𝑋) → (𝑈𝐻𝑦) = 𝑦)
18 isringod.9 . . . . . . . 8 ((𝜑𝑦𝑋) → (𝑦𝐻𝑈) = 𝑦)
1917, 18jca 553 . . . . . . 7 ((𝜑𝑦𝑋) → ((𝑈𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑈) = 𝑦))
2019ralrimiva 2995 . . . . . 6 (𝜑 → ∀𝑦𝑋 ((𝑈𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑈) = 𝑦))
21 oveq1 6697 . . . . . . . . . 10 (𝑥 = 𝑈 → (𝑥𝐻𝑦) = (𝑈𝐻𝑦))
2221eqeq1d 2653 . . . . . . . . 9 (𝑥 = 𝑈 → ((𝑥𝐻𝑦) = 𝑦 ↔ (𝑈𝐻𝑦) = 𝑦))
23 oveq2 6698 . . . . . . . . . 10 (𝑥 = 𝑈 → (𝑦𝐻𝑥) = (𝑦𝐻𝑈))
2423eqeq1d 2653 . . . . . . . . 9 (𝑥 = 𝑈 → ((𝑦𝐻𝑥) = 𝑦 ↔ (𝑦𝐻𝑈) = 𝑦))
2522, 24anbi12d 747 . . . . . . . 8 (𝑥 = 𝑈 → (((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ((𝑈𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑈) = 𝑦)))
2625ralbidv 3015 . . . . . . 7 (𝑥 = 𝑈 → (∀𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∀𝑦𝑋 ((𝑈𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑈) = 𝑦)))
2726rspcev 3340 . . . . . 6 ((𝑈𝑋 ∧ ∀𝑦𝑋 ((𝑈𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑈) = 𝑦)) → ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))
2816, 20, 27syl2anc 694 . . . . 5 (𝜑 → ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))
293raleqdv 3174 . . . . . 6 (𝜑 → (∀𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∀𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
303, 29rexeqbidv 3183 . . . . 5 (𝜑 → (∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
3128, 30mpbid 222 . . . 4 (𝜑 → ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))
3215, 31jca 553 . . 3 (𝜑 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
331, 6, 32jca31 556 . 2 (𝜑 → ((𝐺 ∈ AbelOp ∧ 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
34 rnexg 7140 . . . . . 6 (𝐺 ∈ AbelOp → ran 𝐺 ∈ V)
351, 34syl 17 . . . . 5 (𝜑 → ran 𝐺 ∈ V)
36 xpexg 7002 . . . . 5 ((ran 𝐺 ∈ V ∧ ran 𝐺 ∈ V) → (ran 𝐺 × ran 𝐺) ∈ V)
3735, 35, 36syl2anc 694 . . . 4 (𝜑 → (ran 𝐺 × ran 𝐺) ∈ V)
38 fex 6530 . . . 4 ((𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ (ran 𝐺 × ran 𝐺) ∈ V) → 𝐻 ∈ V)
396, 37, 38syl2anc 694 . . 3 (𝜑𝐻 ∈ V)
40 eqid 2651 . . . 4 ran 𝐺 = ran 𝐺
4140isrngo 33826 . . 3 (𝐻 ∈ V → (⟨𝐺, 𝐻⟩ ∈ RingOps ↔ ((𝐺 ∈ AbelOp ∧ 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))))
4239, 41syl 17 . 2 (𝜑 → (⟨𝐺, 𝐻⟩ ∈ RingOps ↔ ((𝐺 ∈ AbelOp ∧ 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))))
4333, 42mpbird 247 1 (𝜑 → ⟨𝐺, 𝐻⟩ ∈ RingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  cop 4216   × cxp 5141  ran crn 5144  wf 5922  (class class class)co 6690  AbelOpcablo 27526  RingOpscrngo 33823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-rngo 33824
This theorem is referenced by:  iscringd  33927
  Copyright terms: Public domain W3C validator