Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrrvv Structured version   Visualization version   GIF version

Theorem isrrvv 31696
Description: Elementhood to the set of real-valued random variables with respect to the probability 𝑃. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Hypothesis
Ref Expression
isrrvv.1 (𝜑𝑃 ∈ Prob)
Assertion
Ref Expression
isrrvv (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋: dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃)))
Distinct variable groups:   𝑦,𝑃   𝑦,𝑋
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem isrrvv
StepHypRef Expression
1 isrrvv.1 . . 3 (𝜑𝑃 ∈ Prob)
21rrvmbfm 31695 . 2 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))
3 domprobsiga 31664 . . . 4 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
41, 3syl 17 . . 3 (𝜑 → dom 𝑃 ran sigAlgebra)
5 brsigarn 31438 . . . 4 𝔅 ∈ (sigAlgebra‘ℝ)
6 elrnsiga 31380 . . . 4 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
75, 6mp1i 13 . . 3 (𝜑 → 𝔅 ran sigAlgebra)
84, 7ismbfm 31505 . 2 (𝜑 → (𝑋 ∈ (dom 𝑃MblFnM𝔅) ↔ (𝑋 ∈ ( 𝔅m dom 𝑃) ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃)))
9 unibrsiga 31440 . . . . . 6 𝔅 = ℝ
109oveq1i 7160 . . . . 5 ( 𝔅m dom 𝑃) = (ℝ ↑m dom 𝑃)
1110eleq2i 2904 . . . 4 (𝑋 ∈ ( 𝔅m dom 𝑃) ↔ 𝑋 ∈ (ℝ ↑m dom 𝑃))
12 reex 10622 . . . . 5 ℝ ∈ V
134uniexd 7462 . . . . 5 (𝜑 dom 𝑃 ∈ V)
14 elmapg 8413 . . . . 5 ((ℝ ∈ V ∧ dom 𝑃 ∈ V) → (𝑋 ∈ (ℝ ↑m dom 𝑃) ↔ 𝑋: dom 𝑃⟶ℝ))
1512, 13, 14sylancr 589 . . . 4 (𝜑 → (𝑋 ∈ (ℝ ↑m dom 𝑃) ↔ 𝑋: dom 𝑃⟶ℝ))
1611, 15syl5bb 285 . . 3 (𝜑 → (𝑋 ∈ ( 𝔅m dom 𝑃) ↔ 𝑋: dom 𝑃⟶ℝ))
1716anbi1d 631 . 2 (𝜑 → ((𝑋 ∈ ( 𝔅m dom 𝑃) ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃) ↔ (𝑋: dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃)))
182, 8, 173bitrd 307 1 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋: dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2110  wral 3138  Vcvv 3495   cuni 4832  ccnv 5549  dom cdm 5550  ran crn 5551  cima 5553  wf 6346  cfv 6350  (class class class)co 7150  m cmap 8400  cr 10530  sigAlgebracsiga 31362  𝔅cbrsiga 31435  MblFnMcmbfm 31503  Probcprb 31660  rRndVarcrrv 31693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-pre-lttri 10605  ax-pre-lttrn 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-ioo 12736  df-topgen 16711  df-top 21496  df-bases 21548  df-esum 31282  df-siga 31363  df-sigagen 31393  df-brsiga 31436  df-meas 31450  df-mbfm 31504  df-prob 31661  df-rrv 31694
This theorem is referenced by:  rrvvf  31697  rrvfinvima  31703  0rrv  31704  coinfliprv  31735
  Copyright terms: Public domain W3C validator