Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issal Structured version   Visualization version   GIF version

Theorem issal 39007
Description: Express the predicate "𝑆 is a sigma-algebra." (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
issal (𝑆𝑉 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
Distinct variable group:   𝑦,𝑆
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem issal
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2676 . . 3 (𝑥 = 𝑆 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑆))
2 raleq 3114 . . . 4 (𝑥 = 𝑆 → (∀𝑦𝑥 ( 𝑥𝑦) ∈ 𝑥 ↔ ∀𝑦𝑆 ( 𝑥𝑦) ∈ 𝑥))
3 unieq 4374 . . . . . . 7 (𝑥 = 𝑆 𝑥 = 𝑆)
43difeq1d 3688 . . . . . 6 (𝑥 = 𝑆 → ( 𝑥𝑦) = ( 𝑆𝑦))
5 id 22 . . . . . 6 (𝑥 = 𝑆𝑥 = 𝑆)
64, 5eleq12d 2681 . . . . 5 (𝑥 = 𝑆 → (( 𝑥𝑦) ∈ 𝑥 ↔ ( 𝑆𝑦) ∈ 𝑆))
76ralbidv 2968 . . . 4 (𝑥 = 𝑆 → (∀𝑦𝑆 ( 𝑥𝑦) ∈ 𝑥 ↔ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆))
82, 7bitrd 266 . . 3 (𝑥 = 𝑆 → (∀𝑦𝑥 ( 𝑥𝑦) ∈ 𝑥 ↔ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆))
9 pweq 4110 . . . . 5 (𝑥 = 𝑆 → 𝒫 𝑥 = 𝒫 𝑆)
109raleqdv 3120 . . . 4 (𝑥 = 𝑆 → (∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → 𝑦𝑥) ↔ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑥)))
11 eleq2 2676 . . . . . 6 (𝑥 = 𝑆 → ( 𝑦𝑥 𝑦𝑆))
1211imbi2d 328 . . . . 5 (𝑥 = 𝑆 → ((𝑦 ≼ ω → 𝑦𝑥) ↔ (𝑦 ≼ ω → 𝑦𝑆)))
1312ralbidv 2968 . . . 4 (𝑥 = 𝑆 → (∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑥) ↔ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆)))
1410, 13bitrd 266 . . 3 (𝑥 = 𝑆 → (∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → 𝑦𝑥) ↔ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆)))
151, 8, 143anbi123d 1390 . 2 (𝑥 = 𝑆 → ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 ( 𝑥𝑦) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → 𝑦𝑥)) ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
16 df-salg 39002 . 2 SAlg = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 ( 𝑥𝑦) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → 𝑦𝑥))}
1715, 16elab2g 3321 1 (𝑆𝑉 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  w3a 1030   = wceq 1474  wcel 1976  wral 2895  cdif 3536  c0 3873  𝒫 cpw 4107   cuni 4366   class class class wbr 4577  ωcom 6934  cdom 7816  SAlgcsalg 39001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-dif 3542  df-in 3546  df-ss 3553  df-pw 4109  df-uni 4367  df-salg 39002
This theorem is referenced by:  pwsal  39008  salunicl  39009  saluncl  39010  prsal  39011  saldifcl  39012  0sal  39013  intsal  39021  issald  39024  caragensal  39212
  Copyright terms: Public domain W3C validator