Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issalnnd Structured version   Visualization version   GIF version

Theorem issalnnd 39870
Description: Sufficient condition to prove that 𝑆 is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
issalnnd.s (𝜑𝑆𝑉)
issalnnd.z (𝜑 → ∅ ∈ 𝑆)
issalnnd.x 𝑋 = 𝑆
issalnnd.d ((𝜑𝑦𝑆) → (𝑋𝑦) ∈ 𝑆)
issalnnd.i ((𝜑𝑒:ℕ⟶𝑆) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆)
Assertion
Ref Expression
issalnnd (𝜑𝑆 ∈ SAlg)
Distinct variable groups:   𝑆,𝑒,𝑦   𝑒,𝑛,𝑦   𝜑,𝑒,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝑆(𝑛)   𝑉(𝑦,𝑒,𝑛)   𝑋(𝑦,𝑒,𝑛)

Proof of Theorem issalnnd
StepHypRef Expression
1 issalnnd.s . 2 (𝜑𝑆𝑉)
2 issalnnd.z . 2 (𝜑 → ∅ ∈ 𝑆)
3 issalnnd.x . 2 𝑋 = 𝑆
4 issalnnd.d . 2 ((𝜑𝑦𝑆) → (𝑋𝑦) ∈ 𝑆)
5 unieq 4410 . . . . . . 7 (𝑦 = ∅ → 𝑦 = ∅)
6 uni0 4431 . . . . . . . 8 ∅ = ∅
76a1i 11 . . . . . . 7 (𝑦 = ∅ → ∅ = ∅)
85, 7eqtrd 2655 . . . . . 6 (𝑦 = ∅ → 𝑦 = ∅)
98adantl 482 . . . . 5 ((𝜑𝑦 = ∅) → 𝑦 = ∅)
102adantr 481 . . . . 5 ((𝜑𝑦 = ∅) → ∅ ∈ 𝑆)
119, 10eqeltrd 2698 . . . 4 ((𝜑𝑦 = ∅) → 𝑦𝑆)
12113ad2antl1 1221 . . 3 (((𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) ∧ 𝑦 = ∅) → 𝑦𝑆)
13 neqne 2798 . . . . 5 𝑦 = ∅ → 𝑦 ≠ ∅)
1413adantl 482 . . . 4 (((𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) ∧ ¬ 𝑦 = ∅) → 𝑦 ≠ ∅)
15 nnfoctb 38698 . . . . . 6 ((𝑦 ≼ ω ∧ 𝑦 ≠ ∅) → ∃𝑒 𝑒:ℕ–onto𝑦)
16153ad2antl3 1223 . . . . 5 (((𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → ∃𝑒 𝑒:ℕ–onto𝑦)
17 founiiun 38834 . . . . . . . . . . 11 (𝑒:ℕ–onto𝑦 𝑦 = 𝑛 ∈ ℕ (𝑒𝑛))
1817adantl 482 . . . . . . . . . 10 (((𝜑𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto𝑦) → 𝑦 = 𝑛 ∈ ℕ (𝑒𝑛))
19 simpll 789 . . . . . . . . . . 11 (((𝜑𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto𝑦) → 𝜑)
20 fof 6072 . . . . . . . . . . . . . 14 (𝑒:ℕ–onto𝑦𝑒:ℕ⟶𝑦)
2120adantl 482 . . . . . . . . . . . . 13 ((𝑦 ∈ 𝒫 𝑆𝑒:ℕ–onto𝑦) → 𝑒:ℕ⟶𝑦)
22 elpwi 4140 . . . . . . . . . . . . . 14 (𝑦 ∈ 𝒫 𝑆𝑦𝑆)
2322adantr 481 . . . . . . . . . . . . 13 ((𝑦 ∈ 𝒫 𝑆𝑒:ℕ–onto𝑦) → 𝑦𝑆)
2421, 23fssd 6014 . . . . . . . . . . . 12 ((𝑦 ∈ 𝒫 𝑆𝑒:ℕ–onto𝑦) → 𝑒:ℕ⟶𝑆)
2524adantll 749 . . . . . . . . . . 11 (((𝜑𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto𝑦) → 𝑒:ℕ⟶𝑆)
26 issalnnd.i . . . . . . . . . . 11 ((𝜑𝑒:ℕ⟶𝑆) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆)
2719, 25, 26syl2anc 692 . . . . . . . . . 10 (((𝜑𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto𝑦) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆)
2818, 27eqeltrd 2698 . . . . . . . . 9 (((𝜑𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto𝑦) → 𝑦𝑆)
2928ex 450 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 𝑆) → (𝑒:ℕ–onto𝑦 𝑦𝑆))
3029adantr 481 . . . . . . 7 (((𝜑𝑦 ∈ 𝒫 𝑆) ∧ 𝑦 ≠ ∅) → (𝑒:ℕ–onto𝑦 𝑦𝑆))
31303adantl3 1217 . . . . . 6 (((𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → (𝑒:ℕ–onto𝑦 𝑦𝑆))
3231exlimdv 1858 . . . . 5 (((𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → (∃𝑒 𝑒:ℕ–onto𝑦 𝑦𝑆))
3316, 32mpd 15 . . . 4 (((𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → 𝑦𝑆)
3414, 33syldan 487 . . 3 (((𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) ∧ ¬ 𝑦 = ∅) → 𝑦𝑆)
3512, 34pm2.61dan 831 . 2 ((𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) → 𝑦𝑆)
361, 2, 3, 4, 35issald 39858 1 (𝜑𝑆 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  wne 2790  cdif 3552  wss 3555  c0 3891  𝒫 cpw 4130   cuni 4402   ciun 4485   class class class wbr 4613  wf 5843  ontowfo 5845  cfv 5847  ωcom 7012  cdom 7897  cn 10964  SAlgcsalg 39835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-salg 39836
This theorem is referenced by:  dmvolsal  39871  subsalsal  39884  smfresal  40302
  Copyright terms: Public domain W3C validator