Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issgon Structured version   Visualization version   GIF version

Theorem issgon 31377
Description: Property of being a sigma-algebra with a given base set, noting that the base set of a sigma-algebra is actually its union set. (Contributed by Thierry Arnoux, 24-Sep-2016.) (Revised by Thierry Arnoux, 23-Oct-2016.)
Assertion
Ref Expression
issgon (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆))

Proof of Theorem issgon
Dummy variables 𝑥 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvssunirn 6693 . . . 4 (sigAlgebra‘𝑂) ⊆ ran sigAlgebra
21sseli 3962 . . 3 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ran sigAlgebra)
3 elex 3512 . . . 4 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ V)
4 issiga 31366 . . . . 5 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
5 elpwuni 5019 . . . . . . . 8 (𝑂𝑆 → (𝑆 ⊆ 𝒫 𝑂 𝑆 = 𝑂))
65biimpa 479 . . . . . . 7 ((𝑂𝑆𝑆 ⊆ 𝒫 𝑂) → 𝑆 = 𝑂)
7 ancom 463 . . . . . . 7 ((𝑆 ⊆ 𝒫 𝑂𝑂𝑆) ↔ (𝑂𝑆𝑆 ⊆ 𝒫 𝑂))
8 eqcom 2828 . . . . . . 7 (𝑂 = 𝑆 𝑆 = 𝑂)
96, 7, 83imtr4i 294 . . . . . 6 ((𝑆 ⊆ 𝒫 𝑂𝑂𝑆) → 𝑂 = 𝑆)
1093ad2antr1 1184 . . . . 5 ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → 𝑂 = 𝑆)
114, 10syl6bi 255 . . . 4 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑂 = 𝑆))
123, 11mpcom 38 . . 3 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑂 = 𝑆)
132, 12jca 514 . 2 (𝑆 ∈ (sigAlgebra‘𝑂) → (𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆))
14 elex 3512 . . . . 5 (𝑆 ran sigAlgebra → 𝑆 ∈ V)
15 isrnsiga 31367 . . . . . . . 8 (𝑆 ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
1615simprbi 499 . . . . . . 7 (𝑆 ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
17 elpwuni 5019 . . . . . . . . . . . . 13 (𝑜𝑆 → (𝑆 ⊆ 𝒫 𝑜 𝑆 = 𝑜))
1817biimpa 479 . . . . . . . . . . . 12 ((𝑜𝑆𝑆 ⊆ 𝒫 𝑜) → 𝑆 = 𝑜)
19 ancom 463 . . . . . . . . . . . 12 ((𝑆 ⊆ 𝒫 𝑜𝑜𝑆) ↔ (𝑜𝑆𝑆 ⊆ 𝒫 𝑜))
20 eqcom 2828 . . . . . . . . . . . 12 (𝑜 = 𝑆 𝑆 = 𝑜)
2118, 19, 203imtr4i 294 . . . . . . . . . . 11 ((𝑆 ⊆ 𝒫 𝑜𝑜𝑆) → 𝑜 = 𝑆)
22213ad2antr1 1184 . . . . . . . . . 10 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → 𝑜 = 𝑆)
23 pweq 4541 . . . . . . . . . . . 12 (𝑜 = 𝑆 → 𝒫 𝑜 = 𝒫 𝑆)
2423sseq2d 3998 . . . . . . . . . . 11 (𝑜 = 𝑆 → (𝑆 ⊆ 𝒫 𝑜𝑆 ⊆ 𝒫 𝑆))
25 eleq1 2900 . . . . . . . . . . . 12 (𝑜 = 𝑆 → (𝑜𝑆 𝑆𝑆))
26 difeq1 4091 . . . . . . . . . . . . . 14 (𝑜 = 𝑆 → (𝑜𝑥) = ( 𝑆𝑥))
2726eleq1d 2897 . . . . . . . . . . . . 13 (𝑜 = 𝑆 → ((𝑜𝑥) ∈ 𝑆 ↔ ( 𝑆𝑥) ∈ 𝑆))
2827ralbidv 3197 . . . . . . . . . . . 12 (𝑜 = 𝑆 → (∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ↔ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆))
2925, 283anbi12d 1433 . . . . . . . . . . 11 (𝑜 = 𝑆 → ((𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) ↔ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3024, 29anbi12d 632 . . . . . . . . . 10 (𝑜 = 𝑆 → ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) ↔ (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
3122, 30syl 17 . . . . . . . . 9 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) ↔ (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
3231ibi 269 . . . . . . . 8 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3332exlimiv 1927 . . . . . . 7 (∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3416, 33syl 17 . . . . . 6 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3534simprd 498 . . . . 5 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
3614, 35jca 514 . . . 4 (𝑆 ran sigAlgebra → (𝑆 ∈ V ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
37 eleq1 2900 . . . . . . . 8 (𝑂 = 𝑆 → (𝑂𝑆 𝑆𝑆))
38 difeq1 4091 . . . . . . . . . 10 (𝑂 = 𝑆 → (𝑂𝑥) = ( 𝑆𝑥))
3938eleq1d 2897 . . . . . . . . 9 (𝑂 = 𝑆 → ((𝑂𝑥) ∈ 𝑆 ↔ ( 𝑆𝑥) ∈ 𝑆))
4039ralbidv 3197 . . . . . . . 8 (𝑂 = 𝑆 → (∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ↔ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆))
4137, 403anbi12d 1433 . . . . . . 7 (𝑂 = 𝑆 → ((𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) ↔ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
4241biimprd 250 . . . . . 6 (𝑂 = 𝑆 → (( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) → (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
43 pwuni 4867 . . . . . . 7 𝑆 ⊆ 𝒫 𝑆
44 pweq 4541 . . . . . . 7 (𝑂 = 𝑆 → 𝒫 𝑂 = 𝒫 𝑆)
4543, 44sseqtrrid 4019 . . . . . 6 (𝑂 = 𝑆𝑆 ⊆ 𝒫 𝑂)
4642, 45jctild 528 . . . . 5 (𝑂 = 𝑆 → (( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) → (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
4746anim2d 613 . . . 4 (𝑂 = 𝑆 → ((𝑆 ∈ V ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑆 ∈ V ∧ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))))
484biimpar 480 . . . 4 ((𝑆 ∈ V ∧ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))) → 𝑆 ∈ (sigAlgebra‘𝑂))
4936, 47, 48syl56 36 . . 3 (𝑂 = 𝑆 → (𝑆 ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘𝑂)))
5049impcom 410 . 2 ((𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆) → 𝑆 ∈ (sigAlgebra‘𝑂))
5113, 50impbii 211 1 (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wral 3138  Vcvv 3494  cdif 3932  wss 3935  𝒫 cpw 4538   cuni 4831   class class class wbr 5058  ran crn 5550  cfv 6349  ωcom 7574  cdom 8501  sigAlgebracsiga 31362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-fv 6357  df-siga 31363
This theorem is referenced by:  sgon  31378  unisg  31397  sxsigon  31446  sxuni  31447  1stmbfm  31513  2ndmbfm  31514  mbfmvolf  31519
  Copyright terms: Public domain W3C validator