HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  issh Structured version   Visualization version   GIF version

Theorem issh 28979
Description: Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
issh (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))

Proof of Theorem issh
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 28770 . . . 4 ℋ ∈ V
21elpw2 5241 . . 3 (𝐻 ∈ 𝒫 ℋ ↔ 𝐻 ⊆ ℋ)
3 3anass 1091 . . 3 ((0𝐻 ∧ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (0𝐻 ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
42, 3anbi12i 628 . 2 ((𝐻 ∈ 𝒫 ℋ ∧ (0𝐻 ∧ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ (𝐻 ⊆ ℋ ∧ (0𝐻 ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻))))
5 eleq2 2901 . . . 4 ( = 𝐻 → (0 ↔ 0𝐻))
6 id 22 . . . . . . 7 ( = 𝐻 = 𝐻)
76sqxpeqd 5582 . . . . . 6 ( = 𝐻 → ( × ) = (𝐻 × 𝐻))
87imaeq2d 5924 . . . . 5 ( = 𝐻 → ( + “ ( × )) = ( + “ (𝐻 × 𝐻)))
98, 6sseq12d 4000 . . . 4 ( = 𝐻 → (( + “ ( × )) ⊆ ↔ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻))
10 xpeq2 5571 . . . . . 6 ( = 𝐻 → (ℂ × ) = (ℂ × 𝐻))
1110imaeq2d 5924 . . . . 5 ( = 𝐻 → ( · “ (ℂ × )) = ( · “ (ℂ × 𝐻)))
1211, 6sseq12d 4000 . . . 4 ( = 𝐻 → (( · “ (ℂ × )) ⊆ ↔ ( · “ (ℂ × 𝐻)) ⊆ 𝐻))
135, 9, 123anbi123d 1432 . . 3 ( = 𝐻 → ((0 ∧ ( + “ ( × )) ⊆ ∧ ( · “ (ℂ × )) ⊆ ) ↔ (0𝐻 ∧ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
14 df-sh 28978 . . 3 S = { ∈ 𝒫 ℋ ∣ (0 ∧ ( + “ ( × )) ⊆ ∧ ( · “ (ℂ × )) ⊆ )}
1513, 14elrab2 3683 . 2 (𝐻S ↔ (𝐻 ∈ 𝒫 ℋ ∧ (0𝐻 ∧ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
16 anass 471 . 2 (((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ (𝐻 ⊆ ℋ ∧ (0𝐻 ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻))))
174, 15, 163bitr4i 305 1 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wss 3936  𝒫 cpw 4539   × cxp 5548  cima 5553  cc 10529  chba 28690   + cva 28691   · csm 28692  0c0v 28695   S csh 28699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-hilex 28770
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3497  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-br 5060  df-opab 5122  df-xp 5556  df-cnv 5558  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-sh 28978
This theorem is referenced by:  issh2  28980  shss  28981  sh0  28987
  Copyright terms: Public domain W3C validator