Step | Hyp | Ref
| Expression |
1 | | df-slw 18151 |
. . 3
⊢ pSyl =
(𝑝 ∈ ℙ, 𝑔 ∈ Grp ↦ {ℎ ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((ℎ ⊆ 𝑘 ∧ 𝑝 pGrp (𝑔 ↾s 𝑘)) ↔ ℎ = 𝑘)}) |
2 | 1 | elmpt2cl 7041 |
. 2
⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp)) |
3 | | simp1 1131 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘)) → 𝑃 ∈ ℙ) |
4 | | subgrcl 17800 |
. . . 4
⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
5 | 4 | 3ad2ant2 1129 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘)) → 𝐺 ∈ Grp) |
6 | 3, 5 | jca 555 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘)) → (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp)) |
7 | | simpr 479 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) |
8 | 7 | fveq2d 6356 |
. . . . . . . 8
⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (SubGrp‘𝑔) = (SubGrp‘𝐺)) |
9 | | simpl 474 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → 𝑝 = 𝑃) |
10 | 7 | oveq1d 6828 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (𝑔 ↾s 𝑘) = (𝐺 ↾s 𝑘)) |
11 | 9, 10 | breq12d 4817 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (𝑝 pGrp (𝑔 ↾s 𝑘) ↔ 𝑃 pGrp (𝐺 ↾s 𝑘))) |
12 | 11 | anbi2d 742 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → ((ℎ ⊆ 𝑘 ∧ 𝑝 pGrp (𝑔 ↾s 𝑘)) ↔ (ℎ ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)))) |
13 | 12 | bibi1d 332 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (((ℎ ⊆ 𝑘 ∧ 𝑝 pGrp (𝑔 ↾s 𝑘)) ↔ ℎ = 𝑘) ↔ ((ℎ ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ ℎ = 𝑘))) |
14 | 8, 13 | raleqbidv 3291 |
. . . . . . . 8
⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (∀𝑘 ∈ (SubGrp‘𝑔)((ℎ ⊆ 𝑘 ∧ 𝑝 pGrp (𝑔 ↾s 𝑘)) ↔ ℎ = 𝑘) ↔ ∀𝑘 ∈ (SubGrp‘𝐺)((ℎ ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ ℎ = 𝑘))) |
15 | 8, 14 | rabeqbidv 3335 |
. . . . . . 7
⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → {ℎ ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((ℎ ⊆ 𝑘 ∧ 𝑝 pGrp (𝑔 ↾s 𝑘)) ↔ ℎ = 𝑘)} = {ℎ ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((ℎ ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ ℎ = 𝑘)}) |
16 | | fvex 6362 |
. . . . . . . 8
⊢
(SubGrp‘𝐺)
∈ V |
17 | 16 | rabex 4964 |
. . . . . . 7
⊢ {ℎ ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((ℎ ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ ℎ = 𝑘)} ∈ V |
18 | 15, 1, 17 | ovmpt2a 6956 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝑃 pSyl 𝐺) = {ℎ ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((ℎ ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ ℎ = 𝑘)}) |
19 | 18 | eleq2d 2825 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ 𝐻 ∈ {ℎ ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((ℎ ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ ℎ = 𝑘)})) |
20 | | sseq1 3767 |
. . . . . . . . 9
⊢ (ℎ = 𝐻 → (ℎ ⊆ 𝑘 ↔ 𝐻 ⊆ 𝑘)) |
21 | 20 | anbi1d 743 |
. . . . . . . 8
⊢ (ℎ = 𝐻 → ((ℎ ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ (𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)))) |
22 | | eqeq1 2764 |
. . . . . . . 8
⊢ (ℎ = 𝐻 → (ℎ = 𝑘 ↔ 𝐻 = 𝑘)) |
23 | 21, 22 | bibi12d 334 |
. . . . . . 7
⊢ (ℎ = 𝐻 → (((ℎ ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ ℎ = 𝑘) ↔ ((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘))) |
24 | 23 | ralbidv 3124 |
. . . . . 6
⊢ (ℎ = 𝐻 → (∀𝑘 ∈ (SubGrp‘𝐺)((ℎ ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ ℎ = 𝑘) ↔ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘))) |
25 | 24 | elrab 3504 |
. . . . 5
⊢ (𝐻 ∈ {ℎ ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((ℎ ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ ℎ = 𝑘)} ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘))) |
26 | 19, 25 | syl6bb 276 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘)))) |
27 | | simpl 474 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → 𝑃 ∈
ℙ) |
28 | 27 | biantrurd 530 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → ((𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘)) ↔ (𝑃 ∈ ℙ ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘))))) |
29 | 26, 28 | bitrd 268 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘))))) |
30 | | 3anass 1081 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘)) ↔ (𝑃 ∈ ℙ ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘)))) |
31 | 29, 30 | syl6bbr 278 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘)))) |
32 | 2, 6, 31 | pm5.21nii 367 |
1
⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘))) |