Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  issoi Structured version   Visualization version   GIF version

Theorem issoi 5036
 Description: An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
issoi.1 (𝑥𝐴 → ¬ 𝑥𝑅𝑥)
issoi.2 ((𝑥𝐴𝑦𝐴𝑧𝐴) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
issoi.3 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
Assertion
Ref Expression
issoi 𝑅 Or 𝐴
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧

Proof of Theorem issoi
StepHypRef Expression
1 issoi.1 . . . . 5 (𝑥𝐴 → ¬ 𝑥𝑅𝑥)
21adantl 482 . . . 4 ((⊤ ∧ 𝑥𝐴) → ¬ 𝑥𝑅𝑥)
3 issoi.2 . . . . 5 ((𝑥𝐴𝑦𝐴𝑧𝐴) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
43adantl 482 . . . 4 ((⊤ ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
52, 4ispod 5013 . . 3 (⊤ → 𝑅 Po 𝐴)
6 issoi.3 . . . 4 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
76adantl 482 . . 3 ((⊤ ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
85, 7issod 5035 . 2 (⊤ → 𝑅 Or 𝐴)
98trud 1490 1 𝑅 Or 𝐴
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   ∨ w3o 1035   ∧ w3a 1036  ⊤wtru 1481   ∈ wcel 1987   class class class wbr 4623   Or wor 5004 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836 This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1038  df-tru 1483  df-ral 2913  df-po 5005  df-so 5006 This theorem is referenced by:  isso2i  5037  ltsopr  9814  sltsolem1  31581
 Copyright terms: Public domain W3C validator