Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isspthonpth-av Structured version   Visualization version   GIF version

Theorem isspthonpth-av 40950
Description: A pair of functions is a simple path between two given vertices iff it is a simple path starting and ending at the two vertices. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 17-Jan-2021.)
Hypothesis
Ref Expression
isspthonpth-av.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isspthonpth-av (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(SPathS‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))

Proof of Theorem isspthonpth-av
StepHypRef Expression
1 isspthonpth-av.v . . 3 𝑉 = (Vtx‘𝐺)
21isspthson 40944 . 2 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPathS‘𝐺)𝑃)))
31istrlson 40909 . . . . . . 7 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(TrailS‘𝐺)𝑃)))
43adantr 479 . . . . . 6 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPathS‘𝐺)𝑃) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(TrailS‘𝐺)𝑃)))
5 sPthisPth 40927 . . . . . . . . 9 (𝐹(SPathS‘𝐺)𝑃𝐹(PathS‘𝐺)𝑃)
6 PthisTrl 40926 . . . . . . . . 9 (𝐹(PathS‘𝐺)𝑃𝐹(TrailS‘𝐺)𝑃)
75, 6syl 17 . . . . . . . 8 (𝐹(SPathS‘𝐺)𝑃𝐹(TrailS‘𝐺)𝑃)
87adantl 480 . . . . . . 7 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPathS‘𝐺)𝑃) → 𝐹(TrailS‘𝐺)𝑃)
98biantrud 526 . . . . . 6 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPathS‘𝐺)𝑃) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(TrailS‘𝐺)𝑃)))
10 trlis1wlk 40900 . . . . . . . . 9 (𝐹(TrailS‘𝐺)𝑃𝐹(1Walks‘𝐺)𝑃)
117, 10syl 17 . . . . . . . 8 (𝐹(SPathS‘𝐺)𝑃𝐹(1Walks‘𝐺)𝑃)
1211adantl 480 . . . . . . 7 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPathS‘𝐺)𝑃) → 𝐹(1Walks‘𝐺)𝑃)
131iswlkOn 40860 . . . . . . . . 9 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
14 3anass 1034 . . . . . . . . 9 ((𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) ↔ (𝐹(1Walks‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
1513, 14syl6bb 274 . . . . . . . 8 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(1Walks‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))))
1615adantr 479 . . . . . . 7 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPathS‘𝐺)𝑃) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(1Walks‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))))
1712, 16mpbirand 528 . . . . . 6 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPathS‘𝐺)𝑃) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
184, 9, 173bitr2d 294 . . . . 5 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPathS‘𝐺)𝑃) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
1918ex 448 . . . 4 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(SPathS‘𝐺)𝑃 → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))))
2019pm5.32rd 669 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → ((𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPathS‘𝐺)𝑃) ↔ (((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) ∧ 𝐹(SPathS‘𝐺)𝑃)))
21 3anass 1034 . . . 4 ((𝐹(SPathS‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) ↔ (𝐹(SPathS‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
22 ancom 464 . . . 4 ((𝐹(SPathS‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ↔ (((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) ∧ 𝐹(SPathS‘𝐺)𝑃))
2321, 22bitr2i 263 . . 3 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) ∧ 𝐹(SPathS‘𝐺)𝑃) ↔ (𝐹(SPathS‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))
2420, 23syl6bb 274 . 2 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → ((𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPathS‘𝐺)𝑃) ↔ (𝐹(SPathS‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
252, 24bitrd 266 1 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(SPathS‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4577  cfv 5790  (class class class)co 6527  0cc0 9792  #chash 12934  Vtxcvtx 40224  1Walksc1wlks 40791  WalksOncwlkson 40793  TrailSctrls 40894  TrailsOnctrlson 40895  PathScpths 40914  SPathScspths 40915  SPathsOncspthson 40917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-ifp 1006  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-fzo 12290  df-hash 12935  df-word 13100  df-1wlks 40795  df-wlkson 40797  df-trls 40896  df-trlson 40897  df-pths 40918  df-spths 40919  df-spthson 40921
This theorem is referenced by:  uhgr1wlkspth  40956  usgr2wlkspth  40960  wspthsnwspthsnon  41117  elwspths2spth  41166
  Copyright terms: Public domain W3C validator