MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issqf Structured version   Visualization version   GIF version

Theorem issqf 25712
Description: Two ways to say that a number is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
issqf (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1))
Distinct variable group:   𝐴,𝑝

Proof of Theorem issqf
StepHypRef Expression
1 isnsqf 25711 . . 3 (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴))
21necon3abid 3052 . 2 (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴))
3 ralnex 3236 . . 3 (∀𝑝 ∈ ℙ ¬ (𝑝↑2) ∥ 𝐴 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)
4 1nn0 11912 . . . . . . 7 1 ∈ ℕ0
5 pccl 16185 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
65ancoms 461 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
7 nn0ltp1le 12039 . . . . . . 7 ((1 ∈ ℕ0 ∧ (𝑝 pCnt 𝐴) ∈ ℕ0) → (1 < (𝑝 pCnt 𝐴) ↔ (1 + 1) ≤ (𝑝 pCnt 𝐴)))
84, 6, 7sylancr 589 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (1 < (𝑝 pCnt 𝐴) ↔ (1 + 1) ≤ (𝑝 pCnt 𝐴)))
9 1re 10640 . . . . . . 7 1 ∈ ℝ
106nn0red 11955 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℝ)
11 ltnle 10719 . . . . . . 7 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ) → (1 < (𝑝 pCnt 𝐴) ↔ ¬ (𝑝 pCnt 𝐴) ≤ 1))
129, 10, 11sylancr 589 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (1 < (𝑝 pCnt 𝐴) ↔ ¬ (𝑝 pCnt 𝐴) ≤ 1))
13 df-2 11699 . . . . . . . 8 2 = (1 + 1)
1413breq1i 5072 . . . . . . 7 (2 ≤ (𝑝 pCnt 𝐴) ↔ (1 + 1) ≤ (𝑝 pCnt 𝐴))
15 id 22 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
16 nnz 12003 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
17 2nn0 11913 . . . . . . . . 9 2 ∈ ℕ0
18 pcdvdsb 16204 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 2 ∈ ℕ0) → (2 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴))
1917, 18mp3an3 1446 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (2 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴))
2015, 16, 19syl2anr 598 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (2 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴))
2114, 20syl5bbr 287 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((1 + 1) ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴))
228, 12, 213bitr3d 311 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (¬ (𝑝 pCnt 𝐴) ≤ 1 ↔ (𝑝↑2) ∥ 𝐴))
2322con1bid 358 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (¬ (𝑝↑2) ∥ 𝐴 ↔ (𝑝 pCnt 𝐴) ≤ 1))
2423ralbidva 3196 . . 3 (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ¬ (𝑝↑2) ∥ 𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1))
253, 24syl5bbr 287 . 2 (𝐴 ∈ ℕ → (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1))
262, 25bitrd 281 1 (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wcel 2110  wne 3016  wral 3138  wrex 3139   class class class wbr 5065  cfv 6354  (class class class)co 7155  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   < clt 10674  cle 10675  cn 11637  2c2 11691  0cn0 11896  cz 11980  cexp 13428  cdvds 15606  cprime 16014   pCnt cpc 16172  μcmu 25671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-q 12348  df-rp 12389  df-fz 12892  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-dvds 15607  df-gcd 15843  df-prm 16015  df-pc 16173  df-mu 25677
This theorem is referenced by:  sqfpc  25713  mumullem2  25756  sqff1o  25758
  Copyright terms: Public domain W3C validator