MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isssc Structured version   Visualization version   GIF version

Theorem isssc 16408
Description: Value of the subcategory subset relation when the arguments are known functions. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
isssc.1 (𝜑𝐻 Fn (𝑆 × 𝑆))
isssc.2 (𝜑𝐽 Fn (𝑇 × 𝑇))
isssc.3 (𝜑𝑇𝑉)
Assertion
Ref Expression
isssc (𝜑 → (𝐻cat 𝐽 ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐻   𝑥,𝐽,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem isssc
Dummy variables 𝑡 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brssc 16402 . . . 4 (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
2 fndm 5953 . . . . . . . . . . . 12 (𝐽 Fn (𝑡 × 𝑡) → dom 𝐽 = (𝑡 × 𝑡))
32adantl 482 . . . . . . . . . . 11 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom 𝐽 = (𝑡 × 𝑡))
4 isssc.2 . . . . . . . . . . . . 13 (𝜑𝐽 Fn (𝑇 × 𝑇))
54adantr 481 . . . . . . . . . . . 12 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑇 × 𝑇))
6 fndm 5953 . . . . . . . . . . . 12 (𝐽 Fn (𝑇 × 𝑇) → dom 𝐽 = (𝑇 × 𝑇))
75, 6syl 17 . . . . . . . . . . 11 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom 𝐽 = (𝑇 × 𝑇))
83, 7eqtr3d 2657 . . . . . . . . . 10 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → (𝑡 × 𝑡) = (𝑇 × 𝑇))
98dmeqd 5291 . . . . . . . . 9 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom (𝑡 × 𝑡) = dom (𝑇 × 𝑇))
10 dmxpid 5310 . . . . . . . . 9 dom (𝑡 × 𝑡) = 𝑡
11 dmxpid 5310 . . . . . . . . 9 dom (𝑇 × 𝑇) = 𝑇
129, 10, 113eqtr3g 2678 . . . . . . . 8 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝑡 = 𝑇)
1312ex 450 . . . . . . 7 (𝜑 → (𝐽 Fn (𝑡 × 𝑡) → 𝑡 = 𝑇))
14 id 22 . . . . . . . . . 10 (𝑡 = 𝑇𝑡 = 𝑇)
1514sqxpeqd 5106 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑡 × 𝑡) = (𝑇 × 𝑇))
1615fneq2d 5945 . . . . . . . 8 (𝑡 = 𝑇 → (𝐽 Fn (𝑡 × 𝑡) ↔ 𝐽 Fn (𝑇 × 𝑇)))
174, 16syl5ibrcom 237 . . . . . . 7 (𝜑 → (𝑡 = 𝑇𝐽 Fn (𝑡 × 𝑡)))
1813, 17impbid 202 . . . . . 6 (𝜑 → (𝐽 Fn (𝑡 × 𝑡) ↔ 𝑡 = 𝑇))
1918anbi1d 740 . . . . 5 (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ (𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧))))
2019exbidv 1847 . . . 4 (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ ∃𝑡(𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧))))
211, 20syl5bb 272 . . 3 (𝜑 → (𝐻cat 𝐽 ↔ ∃𝑡(𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧))))
22 isssc.3 . . . 4 (𝜑𝑇𝑉)
23 pweq 4138 . . . . . 6 (𝑡 = 𝑇 → 𝒫 𝑡 = 𝒫 𝑇)
2423rexeqdv 3137 . . . . 5 (𝑡 = 𝑇 → (∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ ∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
2524ceqsexgv 3322 . . . 4 (𝑇𝑉 → (∃𝑡(𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ ∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
2622, 25syl 17 . . 3 (𝜑 → (∃𝑡(𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ ∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
2721, 26bitrd 268 . 2 (𝜑 → (𝐻cat 𝐽 ↔ ∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
28 df-rex 2913 . . 3 (∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
29 3anass 1040 . . . . . . . 8 ((𝐻 ∈ V ∧ 𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) ↔ (𝐻 ∈ V ∧ (𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
30 elixp2 7863 . . . . . . . 8 (𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ (𝐻 ∈ V ∧ 𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))
31 vex 3192 . . . . . . . . . . . 12 𝑠 ∈ V
3231, 31xpex 6922 . . . . . . . . . . 11 (𝑠 × 𝑠) ∈ V
33 fnex 6441 . . . . . . . . . . 11 ((𝐻 Fn (𝑠 × 𝑠) ∧ (𝑠 × 𝑠) ∈ V) → 𝐻 ∈ V)
3432, 33mpan2 706 . . . . . . . . . 10 (𝐻 Fn (𝑠 × 𝑠) → 𝐻 ∈ V)
3534adantr 481 . . . . . . . . 9 ((𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) → 𝐻 ∈ V)
3635pm4.71ri 664 . . . . . . . 8 ((𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) ↔ (𝐻 ∈ V ∧ (𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
3729, 30, 363bitr4i 292 . . . . . . 7 (𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ (𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))
38 fndm 5953 . . . . . . . . . . . . . 14 (𝐻 Fn (𝑠 × 𝑠) → dom 𝐻 = (𝑠 × 𝑠))
3938adantl 482 . . . . . . . . . . . . 13 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom 𝐻 = (𝑠 × 𝑠))
40 isssc.1 . . . . . . . . . . . . . . 15 (𝜑𝐻 Fn (𝑆 × 𝑆))
4140adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑆 × 𝑆))
42 fndm 5953 . . . . . . . . . . . . . 14 (𝐻 Fn (𝑆 × 𝑆) → dom 𝐻 = (𝑆 × 𝑆))
4341, 42syl 17 . . . . . . . . . . . . 13 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom 𝐻 = (𝑆 × 𝑆))
4439, 43eqtr3d 2657 . . . . . . . . . . . 12 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → (𝑠 × 𝑠) = (𝑆 × 𝑆))
4544dmeqd 5291 . . . . . . . . . . 11 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom (𝑠 × 𝑠) = dom (𝑆 × 𝑆))
46 dmxpid 5310 . . . . . . . . . . 11 dom (𝑠 × 𝑠) = 𝑠
47 dmxpid 5310 . . . . . . . . . . 11 dom (𝑆 × 𝑆) = 𝑆
4845, 46, 473eqtr3g 2678 . . . . . . . . . 10 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝑠 = 𝑆)
4948ex 450 . . . . . . . . 9 (𝜑 → (𝐻 Fn (𝑠 × 𝑠) → 𝑠 = 𝑆))
50 id 22 . . . . . . . . . . . 12 (𝑠 = 𝑆𝑠 = 𝑆)
5150sqxpeqd 5106 . . . . . . . . . . 11 (𝑠 = 𝑆 → (𝑠 × 𝑠) = (𝑆 × 𝑆))
5251fneq2d 5945 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝐻 Fn (𝑠 × 𝑠) ↔ 𝐻 Fn (𝑆 × 𝑆)))
5340, 52syl5ibrcom 237 . . . . . . . . 9 (𝜑 → (𝑠 = 𝑆𝐻 Fn (𝑠 × 𝑠)))
5449, 53impbid 202 . . . . . . . 8 (𝜑 → (𝐻 Fn (𝑠 × 𝑠) ↔ 𝑠 = 𝑆))
5554anbi1d 740 . . . . . . 7 (𝜑 → ((𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) ↔ (𝑠 = 𝑆 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
5637, 55syl5bb 272 . . . . . 6 (𝜑 → (𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ (𝑠 = 𝑆 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
5756anbi2d 739 . . . . 5 (𝜑 → ((𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ (𝑠 ∈ 𝒫 𝑇 ∧ (𝑠 = 𝑆 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))))
58 an12 837 . . . . 5 ((𝑠 ∈ 𝒫 𝑇 ∧ (𝑠 = 𝑆 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) ↔ (𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
5957, 58syl6bb 276 . . . 4 (𝜑 → ((𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ (𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))))
6059exbidv 1847 . . 3 (𝜑 → (∃𝑠(𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ ∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))))
6128, 60syl5bb 272 . 2 (𝜑 → (∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ ∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))))
62 exsimpl 1792 . . . . 5 (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) → ∃𝑠 𝑠 = 𝑆)
63 isset 3196 . . . . 5 (𝑆 ∈ V ↔ ∃𝑠 𝑠 = 𝑆)
6462, 63sylibr 224 . . . 4 (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) → 𝑆 ∈ V)
6564a1i 11 . . 3 (𝜑 → (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) → 𝑆 ∈ V))
66 ssexg 4769 . . . . . 6 ((𝑆𝑇𝑇𝑉) → 𝑆 ∈ V)
6766expcom 451 . . . . 5 (𝑇𝑉 → (𝑆𝑇𝑆 ∈ V))
6822, 67syl 17 . . . 4 (𝜑 → (𝑆𝑇𝑆 ∈ V))
6968adantrd 484 . . 3 (𝜑 → ((𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)) → 𝑆 ∈ V))
7031elpw 4141 . . . . . . 7 (𝑠 ∈ 𝒫 𝑇𝑠𝑇)
71 sseq1 3610 . . . . . . 7 (𝑠 = 𝑆 → (𝑠𝑇𝑆𝑇))
7270, 71syl5bb 272 . . . . . 6 (𝑠 = 𝑆 → (𝑠 ∈ 𝒫 𝑇𝑆𝑇))
7351raleqdv 3136 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ ∀𝑧 ∈ (𝑆 × 𝑆)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))
74 fvex 6163 . . . . . . . . . 10 (𝐻𝑧) ∈ V
7574elpw 4141 . . . . . . . . 9 ((𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ (𝐻𝑧) ⊆ (𝐽𝑧))
76 fveq2 6153 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
77 df-ov 6613 . . . . . . . . . . 11 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
7876, 77syl6eqr 2673 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝑥𝐻𝑦))
79 fveq2 6153 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐽𝑧) = (𝐽‘⟨𝑥, 𝑦⟩))
80 df-ov 6613 . . . . . . . . . . 11 (𝑥𝐽𝑦) = (𝐽‘⟨𝑥, 𝑦⟩)
8179, 80syl6eqr 2673 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐽𝑧) = (𝑥𝐽𝑦))
8278, 81sseq12d 3618 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐻𝑧) ⊆ (𝐽𝑧) ↔ (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
8375, 82syl5bb 272 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
8483ralxp 5228 . . . . . . 7 (∀𝑧 ∈ (𝑆 × 𝑆)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))
8573, 84syl6bb 276 . . . . . 6 (𝑠 = 𝑆 → (∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
8672, 85anbi12d 746 . . . . 5 (𝑠 = 𝑆 → ((𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
8786ceqsexgv 3322 . . . 4 (𝑆 ∈ V → (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
8887a1i 11 . . 3 (𝜑 → (𝑆 ∈ V → (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))))
8965, 69, 88pm5.21ndd 369 . 2 (𝜑 → (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
9027, 61, 893bitrd 294 1 (𝜑 → (𝐻cat 𝐽 ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  wral 2907  wrex 2908  Vcvv 3189  wss 3559  𝒫 cpw 4135  cop 4159   class class class wbr 4618   × cxp 5077  dom cdm 5079   Fn wfn 5847  cfv 5852  (class class class)co 6610  Xcixp 7859  cat cssc 16395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-ixp 7860  df-ssc 16398
This theorem is referenced by:  ssc1  16409  ssc2  16410  sscres  16411  ssctr  16413  0ssc  16425  catsubcat  16427  rnghmsscmap2  41282  rnghmsscmap  41283  rhmsscmap2  41328  rhmsscmap  41329  rhmsscrnghm  41335  srhmsubc  41385  fldhmsubc  41393  srhmsubcALTV  41403  fldhmsubcALTV  41411
  Copyright terms: Public domain W3C validator