MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issstrmgm Structured version   Visualization version   GIF version

Theorem issstrmgm 17299
Description: Characterize a substructure as submagma by closure properties. (Contributed by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
issstrmgm.b 𝐵 = (Base‘𝐺)
issstrmgm.p + = (+g𝐺)
issstrmgm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
issstrmgm ((𝐻𝑉𝑆𝐵) → (𝐻 ∈ Mgm ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   + (𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem issstrmgm
StepHypRef Expression
1 simplr 807 . . . . 5 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝐻 ∈ Mgm)
2 simplr 807 . . . . . . . . . 10 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑆𝐵)
3 issstrmgm.h . . . . . . . . . . 11 𝐻 = (𝐺s 𝑆)
4 issstrmgm.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
53, 4ressbas2 15978 . . . . . . . . . 10 (𝑆𝐵𝑆 = (Base‘𝐻))
62, 5syl 17 . . . . . . . . 9 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑆 = (Base‘𝐻))
76eleq2d 2716 . . . . . . . 8 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → (𝑥𝑆𝑥 ∈ (Base‘𝐻)))
87biimpcd 239 . . . . . . 7 (𝑥𝑆 → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑥 ∈ (Base‘𝐻)))
98adantr 480 . . . . . 6 ((𝑥𝑆𝑦𝑆) → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑥 ∈ (Base‘𝐻)))
109impcom 445 . . . . 5 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐻))
116eleq2d 2716 . . . . . . . 8 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → (𝑦𝑆𝑦 ∈ (Base‘𝐻)))
1211biimpcd 239 . . . . . . 7 (𝑦𝑆 → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑦 ∈ (Base‘𝐻)))
1312adantl 481 . . . . . 6 ((𝑥𝑆𝑦𝑆) → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑦 ∈ (Base‘𝐻)))
1413impcom 445 . . . . 5 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐻))
15 eqid 2651 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
16 eqid 2651 . . . . . 6 (+g𝐻) = (+g𝐻)
1715, 16mgmcl 17292 . . . . 5 ((𝐻 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
181, 10, 14, 17syl3anc 1366 . . . 4 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
19 fvex 6239 . . . . . . . . . 10 (Base‘𝐺) ∈ V
204, 19eqeltri 2726 . . . . . . . . 9 𝐵 ∈ V
2120ssex 4835 . . . . . . . 8 (𝑆𝐵𝑆 ∈ V)
2221adantl 481 . . . . . . 7 ((𝐻𝑉𝑆𝐵) → 𝑆 ∈ V)
23 issstrmgm.p . . . . . . . 8 + = (+g𝐺)
243, 23ressplusg 16040 . . . . . . 7 (𝑆 ∈ V → + = (+g𝐻))
2522, 24syl 17 . . . . . 6 ((𝐻𝑉𝑆𝐵) → + = (+g𝐻))
2625adantr 480 . . . . 5 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → + = (+g𝐻))
2726oveqdr 6714 . . . 4 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
286adantr 480 . . . 4 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑆 = (Base‘𝐻))
2918, 27, 283eltr4d 2745 . . 3 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3029ralrimivva 3000 . 2 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
315adantl 481 . . . . 5 ((𝐻𝑉𝑆𝐵) → 𝑆 = (Base‘𝐻))
3225oveqd 6707 . . . . . . 7 ((𝐻𝑉𝑆𝐵) → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
3332, 31eleq12d 2724 . . . . . 6 ((𝐻𝑉𝑆𝐵) → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3431, 33raleqbidv 3182 . . . . 5 ((𝐻𝑉𝑆𝐵) → (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ↔ ∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3531, 34raleqbidv 3182 . . . 4 ((𝐻𝑉𝑆𝐵) → (∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3635biimpa 500 . . 3 (((𝐻𝑉𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
3715, 16ismgm 17290 . . . 4 (𝐻𝑉 → (𝐻 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3837ad2antrr 762 . . 3 (((𝐻𝑉𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝐻 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3936, 38mpbird 247 . 2 (((𝐻𝑉𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝐻 ∈ Mgm)
4030, 39impbida 895 1 ((𝐻𝑉𝑆𝐵) → (𝐻 ∈ Mgm ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  wss 3607  cfv 5926  (class class class)co 6690  Basecbs 15904  s cress 15905  +gcplusg 15988  Mgmcmgm 17287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mgm 17289
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator