HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isst Structured version   Visualization version   GIF version

Theorem isst 29056
Description: Property of a state. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
isst (𝑆 ∈ States ↔ (𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
Distinct variable group:   𝑥,𝑦,𝑆

Proof of Theorem isst
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ovex 6675 . . . 4 (0[,]1) ∈ V
2 chex 28067 . . . 4 C ∈ V
31, 2elmap 7883 . . 3 (𝑆 ∈ ((0[,]1) ↑𝑚 C ) ↔ 𝑆: C ⟶(0[,]1))
43anbi1i 731 . 2 ((𝑆 ∈ ((0[,]1) ↑𝑚 C ) ∧ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))) ↔ (𝑆: C ⟶(0[,]1) ∧ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
5 fveq1 6188 . . . . 5 (𝑓 = 𝑆 → (𝑓‘ ℋ) = (𝑆‘ ℋ))
65eqeq1d 2623 . . . 4 (𝑓 = 𝑆 → ((𝑓‘ ℋ) = 1 ↔ (𝑆‘ ℋ) = 1))
7 fveq1 6188 . . . . . . 7 (𝑓 = 𝑆 → (𝑓‘(𝑥 𝑦)) = (𝑆‘(𝑥 𝑦)))
8 fveq1 6188 . . . . . . . 8 (𝑓 = 𝑆 → (𝑓𝑥) = (𝑆𝑥))
9 fveq1 6188 . . . . . . . 8 (𝑓 = 𝑆 → (𝑓𝑦) = (𝑆𝑦))
108, 9oveq12d 6665 . . . . . . 7 (𝑓 = 𝑆 → ((𝑓𝑥) + (𝑓𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))
117, 10eqeq12d 2636 . . . . . 6 (𝑓 = 𝑆 → ((𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦)) ↔ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))
1211imbi2d 330 . . . . 5 (𝑓 = 𝑆 → ((𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦))) ↔ (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
13122ralbidv 2988 . . . 4 (𝑓 = 𝑆 → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦))) ↔ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
146, 13anbi12d 747 . . 3 (𝑓 = 𝑆 → (((𝑓‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦)))) ↔ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
15 df-st 29054 . . 3 States = {𝑓 ∈ ((0[,]1) ↑𝑚 C ) ∣ ((𝑓‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦))))}
1614, 15elrab2 3364 . 2 (𝑆 ∈ States ↔ (𝑆 ∈ ((0[,]1) ↑𝑚 C ) ∧ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
17 3anass 1041 . 2 ((𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) ↔ (𝑆: C ⟶(0[,]1) ∧ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
184, 16, 173bitr4i 292 1 (𝑆 ∈ States ↔ (𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1482  wcel 1989  wral 2911  wss 3572  wf 5882  cfv 5886  (class class class)co 6647  𝑚 cmap 7854  0cc0 9933  1c1 9934   + caddc 9936  [,]cicc 12175  chil 27760   C cch 27770  cort 27771   chj 27774  Statescst 27803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-hilex 27840
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-fv 5894  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-map 7856  df-sh 28048  df-ch 28062  df-st 29054
This theorem is referenced by:  sticl  29058  sthil  29077  stj  29078  strlem3a  29095
  Copyright terms: Public domain W3C validator