MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubc3 Structured version   Visualization version   GIF version

Theorem issubc3 17107
Description: Alternate definition of a subcategory, as a subset of the category which is itself a category. The assumption that the identity be closed is necessary just as in the case of a monoid, issubm2 17957, for the same reasons, since categories are a generalization of monoids. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
issubc3.h 𝐻 = (Homf𝐶)
issubc3.i 1 = (Id‘𝐶)
issubc3.1 𝐷 = (𝐶cat 𝐽)
issubc3.c (𝜑𝐶 ∈ Cat)
issubc3.a (𝜑𝐽 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
issubc3 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐻   𝜑,𝑥   𝑥,𝐽   𝑥,𝑆
Allowed substitution hint:   1 (𝑥)

Proof of Theorem issubc3
Dummy variables 𝑓 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . 4 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → 𝐽 ∈ (Subcat‘𝐶))
2 issubc3.h . . . 4 𝐻 = (Homf𝐶)
31, 2subcssc 17098 . . 3 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → 𝐽cat 𝐻)
41adantr 481 . . . . 5 (((𝜑𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥𝑆) → 𝐽 ∈ (Subcat‘𝐶))
5 issubc3.a . . . . . 6 (𝜑𝐽 Fn (𝑆 × 𝑆))
65ad2antrr 722 . . . . 5 (((𝜑𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥𝑆) → 𝐽 Fn (𝑆 × 𝑆))
7 simpr 485 . . . . 5 (((𝜑𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥𝑆) → 𝑥𝑆)
8 issubc3.i . . . . 5 1 = (Id‘𝐶)
94, 6, 7, 8subcidcl 17102 . . . 4 (((𝜑𝐽 ∈ (Subcat‘𝐶)) ∧ 𝑥𝑆) → ( 1𝑥) ∈ (𝑥𝐽𝑥))
109ralrimiva 3179 . . 3 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
11 issubc3.1 . . . 4 𝐷 = (𝐶cat 𝐽)
1211, 1subccat 17106 . . 3 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → 𝐷 ∈ Cat)
133, 10, 123jca 1120 . 2 ((𝜑𝐽 ∈ (Subcat‘𝐶)) → (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat))
14 simpr1 1186 . . 3 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐽cat 𝐻)
15 simpr2 1187 . . . 4 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
16 eqid 2818 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝐷)
17 eqid 2818 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
18 eqid 2818 . . . . . . . . . 10 (comp‘𝐷) = (comp‘𝐷)
19 simplrr 774 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐷 ∈ Cat)
20 simprl1 1210 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑥𝑆)
21 eqid 2818 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
22 issubc3.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ Cat)
2322ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐶 ∈ Cat)
245ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐽 Fn (𝑆 × 𝑆))
252, 21homffn 16951 . . . . . . . . . . . . . 14 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶))
2625a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)))
27 simplrl 773 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐽cat 𝐻)
2824, 26, 27ssc1 17079 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑆 ⊆ (Base‘𝐶))
2911, 21, 23, 24, 28rescbas 17087 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑆 = (Base‘𝐷))
3020, 29eleqtrd 2912 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑥 ∈ (Base‘𝐷))
31 simprl2 1211 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑦𝑆)
3231, 29eleqtrd 2912 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑦 ∈ (Base‘𝐷))
33 simprl3 1212 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑧𝑆)
3433, 29eleqtrd 2912 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑧 ∈ (Base‘𝐷))
35 simprrl 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑥𝐽𝑦))
3611, 21, 23, 24, 28reschom 17088 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝐽 = (Hom ‘𝐷))
3736oveqd 7162 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑥𝐽𝑦) = (𝑥(Hom ‘𝐷)𝑦))
3835, 37eleqtrd 2912 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))
39 simprrr 778 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑦𝐽𝑧))
4036oveqd 7162 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑦𝐽𝑧) = (𝑦(Hom ‘𝐷)𝑧))
4139, 40eleqtrd 2912 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
4216, 17, 18, 19, 30, 32, 34, 38, 41catcocl 16944 . . . . . . . . 9 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧))
43 eqid 2818 . . . . . . . . . . . 12 (comp‘𝐶) = (comp‘𝐶)
4411, 21, 23, 24, 28, 43rescco 17090 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (comp‘𝐶) = (comp‘𝐷))
4544oveqd 7162 . . . . . . . . . 10 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧) = (⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧))
4645oveqd 7162 . . . . . . . . 9 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))
4736oveqd 7162 . . . . . . . . 9 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑥𝐽𝑧) = (𝑥(Hom ‘𝐷)𝑧))
4842, 46, 473eltr4d 2925 . . . . . . . 8 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ ((𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
4948anassrs 468 . . . . . . 7 ((((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
5049ralrimivva 3188 . . . . . 6 (((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
5150ralrimivvva 3189 . . . . 5 ((𝜑 ∧ (𝐽cat 𝐻𝐷 ∈ Cat)) → ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
52513adantr2 1162 . . . 4 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))
53 r19.26 3167 . . . 4 (∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) ↔ (∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5415, 52, 53sylanbrc 583 . . 3 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5522adantr 481 . . . 4 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐶 ∈ Cat)
565adantr 481 . . . 4 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐽 Fn (𝑆 × 𝑆))
572, 8, 43, 55, 56issubc2 17094 . . 3 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
5814, 54, 57mpbir2and 709 . 2 ((𝜑 ∧ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)) → 𝐽 ∈ (Subcat‘𝐶))
5913, 58impbida 797 1 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ 𝐷 ∈ Cat)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  cop 4563   class class class wbr 5057   × cxp 5546   Fn wfn 6343  cfv 6348  (class class class)co 7145  Basecbs 16471  Hom chom 16564  compcco 16565  Catccat 16923  Idccid 16924  Homf chomf 16925  cat cssc 17065  cat cresc 17066  Subcatcsubc 17067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-hom 16577  df-cco 16578  df-cat 16927  df-cid 16928  df-homf 16929  df-ssc 17068  df-resc 17069  df-subc 17070
This theorem is referenced by:  subsubc  17111
  Copyright terms: Public domain W3C validator