MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubgrpd2 Structured version   Visualization version   GIF version

Theorem issubgrpd2 18297
Description: Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.)
Hypotheses
Ref Expression
issubgrpd.s (𝜑𝑆 = (𝐼s 𝐷))
issubgrpd.z (𝜑0 = (0g𝐼))
issubgrpd.p (𝜑+ = (+g𝐼))
issubgrpd.ss (𝜑𝐷 ⊆ (Base‘𝐼))
issubgrpd.zcl (𝜑0𝐷)
issubgrpd.acl ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
issubgrpd.ncl ((𝜑𝑥𝐷) → ((invg𝐼)‘𝑥) ∈ 𝐷)
issubgrpd.g (𝜑𝐼 ∈ Grp)
Assertion
Ref Expression
issubgrpd2 (𝜑𝐷 ∈ (SubGrp‘𝐼))
Distinct variable groups:   𝑥,𝑦, 0   𝑥,𝐷,𝑦   𝑥,𝐼,𝑦   𝑥, + ,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦

Proof of Theorem issubgrpd2
StepHypRef Expression
1 issubgrpd.ss . 2 (𝜑𝐷 ⊆ (Base‘𝐼))
2 issubgrpd.zcl . . 3 (𝜑0𝐷)
32ne0d 4303 . 2 (𝜑𝐷 ≠ ∅)
4 issubgrpd.p . . . . . . . 8 (𝜑+ = (+g𝐼))
54oveqd 7175 . . . . . . 7 (𝜑 → (𝑥 + 𝑦) = (𝑥(+g𝐼)𝑦))
65ad2antrr 724 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑦𝐷) → (𝑥 + 𝑦) = (𝑥(+g𝐼)𝑦))
7 issubgrpd.acl . . . . . . 7 ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
873expa 1114 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
96, 8eqeltrrd 2916 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑦𝐷) → (𝑥(+g𝐼)𝑦) ∈ 𝐷)
109ralrimiva 3184 . . . 4 ((𝜑𝑥𝐷) → ∀𝑦𝐷 (𝑥(+g𝐼)𝑦) ∈ 𝐷)
11 issubgrpd.ncl . . . 4 ((𝜑𝑥𝐷) → ((invg𝐼)‘𝑥) ∈ 𝐷)
1210, 11jca 514 . . 3 ((𝜑𝑥𝐷) → (∀𝑦𝐷 (𝑥(+g𝐼)𝑦) ∈ 𝐷 ∧ ((invg𝐼)‘𝑥) ∈ 𝐷))
1312ralrimiva 3184 . 2 (𝜑 → ∀𝑥𝐷 (∀𝑦𝐷 (𝑥(+g𝐼)𝑦) ∈ 𝐷 ∧ ((invg𝐼)‘𝑥) ∈ 𝐷))
14 issubgrpd.g . . 3 (𝜑𝐼 ∈ Grp)
15 eqid 2823 . . . 4 (Base‘𝐼) = (Base‘𝐼)
16 eqid 2823 . . . 4 (+g𝐼) = (+g𝐼)
17 eqid 2823 . . . 4 (invg𝐼) = (invg𝐼)
1815, 16, 17issubg2 18296 . . 3 (𝐼 ∈ Grp → (𝐷 ∈ (SubGrp‘𝐼) ↔ (𝐷 ⊆ (Base‘𝐼) ∧ 𝐷 ≠ ∅ ∧ ∀𝑥𝐷 (∀𝑦𝐷 (𝑥(+g𝐼)𝑦) ∈ 𝐷 ∧ ((invg𝐼)‘𝑥) ∈ 𝐷))))
1914, 18syl 17 . 2 (𝜑 → (𝐷 ∈ (SubGrp‘𝐼) ↔ (𝐷 ⊆ (Base‘𝐼) ∧ 𝐷 ≠ ∅ ∧ ∀𝑥𝐷 (∀𝑦𝐷 (𝑥(+g𝐼)𝑦) ∈ 𝐷 ∧ ((invg𝐼)‘𝑥) ∈ 𝐷))))
201, 3, 13, 19mpbir3and 1338 1 (𝜑𝐷 ∈ (SubGrp‘𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wss 3938  c0 4293  cfv 6357  (class class class)co 7158  Basecbs 16485  s cress 16486  +gcplusg 16567  0gc0g 16715  Grpcgrp 18105  invgcminusg 18106  SubGrpcsubg 18275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-subg 18278
This theorem is referenced by:  issubgrpd  18298  symgsssg  18597  symgfisg  18598  issubrngd2  19963  dsmmsubg  20889
  Copyright terms: Public domain W3C validator