Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issubmgm2 Structured version   Visualization version   GIF version

Theorem issubmgm2 41582
Description: Submagmas are subsets that are also magmas. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
issubmgm2.b 𝐵 = (Base‘𝑀)
issubmgm2.h 𝐻 = (𝑀s 𝑆)
Assertion
Ref Expression
issubmgm2 (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆𝐵𝐻 ∈ Mgm)))

Proof of Theorem issubmgm2
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubmgm2.b . . 3 𝐵 = (Base‘𝑀)
2 eqid 2609 . . 3 (+g𝑀) = (+g𝑀)
31, 2issubmgm 41581 . 2 (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
4 issubmgm2.h . . . . . . 7 𝐻 = (𝑀s 𝑆)
54, 1ressbas2 15704 . . . . . 6 (𝑆𝐵𝑆 = (Base‘𝐻))
65ad2antlr 758 . . . . 5 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) → 𝑆 = (Base‘𝐻))
7 ovex 6555 . . . . . . 7 (𝑀s 𝑆) ∈ V
84, 7eqeltri 2683 . . . . . 6 𝐻 ∈ V
98a1i 11 . . . . 5 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) → 𝐻 ∈ V)
10 fvex 6098 . . . . . . . . 9 (Base‘𝑀) ∈ V
111, 10eqeltri 2683 . . . . . . . 8 𝐵 ∈ V
1211ssex 4725 . . . . . . 7 (𝑆𝐵𝑆 ∈ V)
1312ad2antlr 758 . . . . . 6 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) → 𝑆 ∈ V)
144, 2ressplusg 15764 . . . . . 6 (𝑆 ∈ V → (+g𝑀) = (+g𝐻))
1513, 14syl 17 . . . . 5 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) → (+g𝑀) = (+g𝐻))
16 oveq1 6534 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝑥(+g𝑀)𝑦) = (𝑎(+g𝑀)𝑦))
1716eleq1d 2671 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝑥(+g𝑀)𝑦) ∈ 𝑆 ↔ (𝑎(+g𝑀)𝑦) ∈ 𝑆))
18 oveq2 6535 . . . . . . . . . 10 (𝑦 = 𝑏 → (𝑎(+g𝑀)𝑦) = (𝑎(+g𝑀)𝑏))
1918eleq1d 2671 . . . . . . . . 9 (𝑦 = 𝑏 → ((𝑎(+g𝑀)𝑦) ∈ 𝑆 ↔ (𝑎(+g𝑀)𝑏) ∈ 𝑆))
2017, 19rspc2v 3292 . . . . . . . 8 ((𝑎𝑆𝑏𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆 → (𝑎(+g𝑀)𝑏) ∈ 𝑆))
2120com12 32 . . . . . . 7 (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆 → ((𝑎𝑆𝑏𝑆) → (𝑎(+g𝑀)𝑏) ∈ 𝑆))
2221adantl 480 . . . . . 6 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) → ((𝑎𝑆𝑏𝑆) → (𝑎(+g𝑀)𝑏) ∈ 𝑆))
23223impib 1253 . . . . 5 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) ∧ 𝑎𝑆𝑏𝑆) → (𝑎(+g𝑀)𝑏) ∈ 𝑆)
246, 9, 15, 23ismgmd 41568 . . . 4 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) → 𝐻 ∈ Mgm)
25 simplr 787 . . . . . . 7 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝐻 ∈ Mgm)
26 simprl 789 . . . . . . . 8 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝑆)
275ad3antlr 762 . . . . . . . 8 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑆 = (Base‘𝐻))
2826, 27eleqtrd 2689 . . . . . . 7 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐻))
29 simpr 475 . . . . . . . . 9 ((𝑥𝑆𝑦𝑆) → 𝑦𝑆)
3029adantl 480 . . . . . . . 8 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝑆)
3130, 27eleqtrd 2689 . . . . . . 7 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐻))
32 eqid 2609 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
33 eqid 2609 . . . . . . . 8 (+g𝐻) = (+g𝐻)
3432, 33mgmcl 17014 . . . . . . 7 ((𝐻 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
3525, 28, 31, 34syl3anc 1317 . . . . . 6 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
3612ad2antlr 758 . . . . . . . 8 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑆 ∈ V)
3736, 14syl 17 . . . . . . 7 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) → (+g𝑀) = (+g𝐻))
3837oveqdr 6551 . . . . . 6 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝑀)𝑦) = (𝑥(+g𝐻)𝑦))
3935, 38, 273eltr4d 2702 . . . . 5 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝑀)𝑦) ∈ 𝑆)
4039ralrimivva 2953 . . . 4 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) → ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)
4124, 40impbida 872 . . 3 ((𝑀 ∈ Mgm ∧ 𝑆𝐵) → (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆𝐻 ∈ Mgm))
4241pm5.32da 670 . 2 (𝑀 ∈ Mgm → ((𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) ↔ (𝑆𝐵𝐻 ∈ Mgm)))
433, 42bitrd 266 1 (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆𝐵𝐻 ∈ Mgm)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2895  Vcvv 3172  wss 3539  cfv 5790  (class class class)co 6527  Basecbs 15641  s cress 15642  +gcplusg 15714  Mgmcmgm 17009  SubMgmcsubmgm 41570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mgm 17011  df-submgm 41572
This theorem is referenced by:  submgmss  41584  submgmid  41585  submgmmgm  41587  subsubmgm  41589
  Copyright terms: Public domain W3C validator