MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubmnd Structured version   Visualization version   GIF version

Theorem issubmnd 17940
Description: Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
issubmnd.b 𝐵 = (Base‘𝐺)
issubmnd.p + = (+g𝐺)
issubmnd.z 0 = (0g𝐺)
issubmnd.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
issubmnd ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥, 0 ,𝑦

Proof of Theorem issubmnd
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝐻 ∈ Mnd)
2 simprl 769 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝑆)
3 simpll2 1209 . . . . . . 7 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑆𝐵)
4 issubmnd.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
5 issubmnd.b . . . . . . . 8 𝐵 = (Base‘𝐺)
64, 5ressbas2 16557 . . . . . . 7 (𝑆𝐵𝑆 = (Base‘𝐻))
73, 6syl 17 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑆 = (Base‘𝐻))
82, 7eleqtrd 2917 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐻))
9 simprr 771 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝑆)
109, 7eleqtrd 2917 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐻))
11 eqid 2823 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
12 eqid 2823 . . . . . 6 (+g𝐻) = (+g𝐻)
1311, 12mndcl 17921 . . . . 5 ((𝐻 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
141, 8, 10, 13syl3anc 1367 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
155fvexi 6686 . . . . . . . . 9 𝐵 ∈ V
1615ssex 5227 . . . . . . . 8 (𝑆𝐵𝑆 ∈ V)
17163ad2ant2 1130 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → 𝑆 ∈ V)
18 issubmnd.p . . . . . . . 8 + = (+g𝐺)
194, 18ressplusg 16614 . . . . . . 7 (𝑆 ∈ V → + = (+g𝐻))
2017, 19syl 17 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → + = (+g𝐻))
2120ad2antrr 724 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → + = (+g𝐻))
2221oveqd 7175 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
2314, 22, 73eltr4d 2930 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2423ralrimivva 3193 . 2 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
25 simpl2 1188 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝑆𝐵)
2625, 6syl 17 . . 3 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝑆 = (Base‘𝐻))
2720adantr 483 . . 3 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → + = (+g𝐻))
28 ovrspc2v 7184 . . . . . 6 (((𝑢𝑆𝑣𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
2928ancoms 461 . . . . 5 ((∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝑢𝑆𝑣𝑆)) → (𝑢 + 𝑣) ∈ 𝑆)
30293impb 1111 . . . 4 ((∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
31303adant1l 1172 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
32 simpl1 1187 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝐺 ∈ Mnd)
3325sseld 3968 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑢𝑆𝑢𝐵))
3425sseld 3968 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑣𝑆𝑣𝐵))
3525sseld 3968 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑤𝑆𝑤𝐵))
3633, 34, 353anim123d 1439 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → ((𝑢𝑆𝑣𝑆𝑤𝑆) → (𝑢𝐵𝑣𝐵𝑤𝐵)))
3736imp 409 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → (𝑢𝐵𝑣𝐵𝑤𝐵))
385, 18mndass 17922 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
3932, 37, 38syl2an2r 683 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
40 simpl3 1189 . . 3 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 0𝑆)
4125sselda 3969 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆) → 𝑢𝐵)
42 issubmnd.z . . . . 5 0 = (0g𝐺)
435, 18, 42mndlid 17933 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑢𝐵) → ( 0 + 𝑢) = 𝑢)
4432, 41, 43syl2an2r 683 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆) → ( 0 + 𝑢) = 𝑢)
455, 18, 42mndrid 17934 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑢𝐵) → (𝑢 + 0 ) = 𝑢)
4632, 41, 45syl2an2r 683 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆) → (𝑢 + 0 ) = 𝑢)
4726, 27, 31, 39, 40, 44, 46ismndd 17935 . 2 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝐻 ∈ Mnd)
4824, 47impbida 799 1 ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  wss 3938  cfv 6357  (class class class)co 7158  Basecbs 16485  s cress 16486  +gcplusg 16567  0gc0g 16715  Mndcmnd 17913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914
This theorem is referenced by:  issubm2  17971
  Copyright terms: Public domain W3C validator