MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist1-3 Structured version   Visualization version   GIF version

Theorem ist1-3 21956
Description: A space is T1 iff every point is the only point in the intersection of all open sets containing that point. (Contributed by Jeff Hankins, 31-Jan-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ist1-3 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥𝑋 {𝑜𝐽𝑥𝑜} = {𝑥}))
Distinct variable groups:   𝑥,𝑜,𝐽   𝑜,𝑋,𝑥

Proof of Theorem ist1-3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ist1-2 21954 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
2 toponmax 21533 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
3 eleq2 2901 . . . . . . . . 9 (𝑜 = 𝑋 → (𝑥𝑜𝑥𝑋))
43intminss 4901 . . . . . . . 8 ((𝑋𝐽𝑥𝑋) → {𝑜𝐽𝑥𝑜} ⊆ 𝑋)
52, 4sylan 582 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝑋) → {𝑜𝐽𝑥𝑜} ⊆ 𝑋)
65sselda 3966 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝑋) ∧ 𝑦 {𝑜𝐽𝑥𝑜}) → 𝑦𝑋)
7 biimt 363 . . . . . 6 (𝑦𝑋 → (𝑦 ∈ {𝑥} ↔ (𝑦𝑋𝑦 ∈ {𝑥})))
86, 7syl 17 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝑋) ∧ 𝑦 {𝑜𝐽𝑥𝑜}) → (𝑦 ∈ {𝑥} ↔ (𝑦𝑋𝑦 ∈ {𝑥})))
98ralbidva 3196 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝑋) → (∀𝑦 {𝑜𝐽𝑥𝑜}𝑦 ∈ {𝑥} ↔ ∀𝑦 {𝑜𝐽𝑥𝑜} (𝑦𝑋𝑦 ∈ {𝑥})))
10 id 22 . . . . . . . . 9 (𝑥𝑜𝑥𝑜)
1110rgenw 3150 . . . . . . . 8 𝑜𝐽 (𝑥𝑜𝑥𝑜)
12 vex 3497 . . . . . . . . 9 𝑥 ∈ V
1312elintrab 4887 . . . . . . . 8 (𝑥 {𝑜𝐽𝑥𝑜} ↔ ∀𝑜𝐽 (𝑥𝑜𝑥𝑜))
1411, 13mpbir 233 . . . . . . 7 𝑥 {𝑜𝐽𝑥𝑜}
15 snssi 4740 . . . . . . 7 (𝑥 {𝑜𝐽𝑥𝑜} → {𝑥} ⊆ {𝑜𝐽𝑥𝑜})
1614, 15ax-mp 5 . . . . . 6 {𝑥} ⊆ {𝑜𝐽𝑥𝑜}
17 eqss 3981 . . . . . 6 ( {𝑜𝐽𝑥𝑜} = {𝑥} ↔ ( {𝑜𝐽𝑥𝑜} ⊆ {𝑥} ∧ {𝑥} ⊆ {𝑜𝐽𝑥𝑜}))
1816, 17mpbiran2 708 . . . . 5 ( {𝑜𝐽𝑥𝑜} = {𝑥} ↔ {𝑜𝐽𝑥𝑜} ⊆ {𝑥})
19 dfss3 3955 . . . . 5 ( {𝑜𝐽𝑥𝑜} ⊆ {𝑥} ↔ ∀𝑦 {𝑜𝐽𝑥𝑜}𝑦 ∈ {𝑥})
2018, 19bitri 277 . . . 4 ( {𝑜𝐽𝑥𝑜} = {𝑥} ↔ ∀𝑦 {𝑜𝐽𝑥𝑜}𝑦 ∈ {𝑥})
21 vex 3497 . . . . . . . 8 𝑦 ∈ V
2221elintrab 4887 . . . . . . 7 (𝑦 {𝑜𝐽𝑥𝑜} ↔ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
23 velsn 4582 . . . . . . . 8 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
24 equcom 2021 . . . . . . . 8 (𝑦 = 𝑥𝑥 = 𝑦)
2523, 24bitri 277 . . . . . . 7 (𝑦 ∈ {𝑥} ↔ 𝑥 = 𝑦)
2622, 25imbi12i 353 . . . . . 6 ((𝑦 {𝑜𝐽𝑥𝑜} → 𝑦 ∈ {𝑥}) ↔ (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
2726ralbii 3165 . . . . 5 (∀𝑦𝑋 (𝑦 {𝑜𝐽𝑥𝑜} → 𝑦 ∈ {𝑥}) ↔ ∀𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
28 ralcom3 3364 . . . . 5 (∀𝑦𝑋 (𝑦 {𝑜𝐽𝑥𝑜} → 𝑦 ∈ {𝑥}) ↔ ∀𝑦 {𝑜𝐽𝑥𝑜} (𝑦𝑋𝑦 ∈ {𝑥}))
2927, 28bitr3i 279 . . . 4 (∀𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ ∀𝑦 {𝑜𝐽𝑥𝑜} (𝑦𝑋𝑦 ∈ {𝑥}))
309, 20, 293bitr4g 316 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝑋) → ( {𝑜𝐽𝑥𝑜} = {𝑥} ↔ ∀𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
3130ralbidva 3196 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑥𝑋 {𝑜𝐽𝑥𝑜} = {𝑥} ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
321, 31bitr4d 284 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥𝑋 {𝑜𝐽𝑥𝑜} = {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  {crab 3142  wss 3935  {csn 4566   cint 4875  cfv 6354  TopOnctopon 21517  Frect1 21914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-int 4876  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-iota 6313  df-fun 6356  df-fv 6362  df-topgen 16716  df-top 21501  df-topon 21518  df-cld 21626  df-t1 21921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator