MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istdrg Structured version   Visualization version   GIF version

Theorem istdrg 22773
Description: Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istrg.1 𝑀 = (mulGrp‘𝑅)
istdrg.1 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
istdrg (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s 𝑈) ∈ TopGrp))

Proof of Theorem istdrg
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elin 4168 . . 3 (𝑅 ∈ (TopRing ∩ DivRing) ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing))
21anbi1i 625 . 2 ((𝑅 ∈ (TopRing ∩ DivRing) ∧ (𝑀s 𝑈) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s 𝑈) ∈ TopGrp))
3 fveq2 6669 . . . . . 6 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
4 istrg.1 . . . . . 6 𝑀 = (mulGrp‘𝑅)
53, 4syl6eqr 2874 . . . . 5 (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝑀)
6 fveq2 6669 . . . . . 6 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
7 istdrg.1 . . . . . 6 𝑈 = (Unit‘𝑅)
86, 7syl6eqr 2874 . . . . 5 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
95, 8oveq12d 7173 . . . 4 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = (𝑀s 𝑈))
109eleq1d 2897 . . 3 (𝑟 = 𝑅 → (((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp ↔ (𝑀s 𝑈) ∈ TopGrp))
11 df-tdrg 22768 . . 3 TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp}
1210, 11elrab2 3682 . 2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ (TopRing ∩ DivRing) ∧ (𝑀s 𝑈) ∈ TopGrp))
13 df-3an 1085 . 2 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s 𝑈) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s 𝑈) ∈ TopGrp))
142, 12, 133bitr4i 305 1 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s 𝑈) ∈ TopGrp))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  cin 3934  cfv 6354  (class class class)co 7155  s cress 16483  mulGrpcmgp 19238  Unitcui 19388  DivRingcdr 19501  TopGrpctgp 22678  TopRingctrg 22763  TopDRingctdrg 22764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-iota 6313  df-fv 6362  df-ov 7158  df-tdrg 22768
This theorem is referenced by:  tdrgunit  22774  tdrgtrg  22780  tdrgdrng  22781  istdrg2  22785  nrgtdrg  23301
  Copyright terms: Public domain W3C validator