MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istdrg2 Structured version   Visualization version   GIF version

Theorem istdrg2 22780
Description: A topological-ring division ring is a topological division ring iff the group of nonzero elements is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istdrg2.m 𝑀 = (mulGrp‘𝑅)
istdrg2.b 𝐵 = (Base‘𝑅)
istdrg2.z 0 = (0g𝑅)
Assertion
Ref Expression
istdrg2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))

Proof of Theorem istdrg2
StepHypRef Expression
1 istdrg2.m . . 3 𝑀 = (mulGrp‘𝑅)
2 eqid 2821 . . 3 (Unit‘𝑅) = (Unit‘𝑅)
31, 2istdrg 22768 . 2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp))
4 istdrg2.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
5 istdrg2.z . . . . . . . . 9 0 = (0g𝑅)
64, 2, 5isdrng 19500 . . . . . . . 8 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })))
76simprbi 499 . . . . . . 7 (𝑅 ∈ DivRing → (Unit‘𝑅) = (𝐵 ∖ { 0 }))
87adantl 484 . . . . . 6 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → (Unit‘𝑅) = (𝐵 ∖ { 0 }))
98oveq2d 7166 . . . . 5 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → (𝑀s (Unit‘𝑅)) = (𝑀s (𝐵 ∖ { 0 })))
109eleq1d 2897 . . . 4 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → ((𝑀s (Unit‘𝑅)) ∈ TopGrp ↔ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
1110pm5.32i 577 . . 3 (((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
12 df-3an 1085 . . 3 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp))
13 df-3an 1085 . . 3 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
1411, 12, 133bitr4i 305 . 2 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp) ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
153, 14bitri 277 1 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  cdif 3933  {csn 4561  cfv 6350  (class class class)co 7150  Basecbs 16477  s cress 16478  0gc0g 16707  mulGrpcmgp 19233  Ringcrg 19291  Unitcui 19383  DivRingcdr 19496  TopGrpctgp 22673  TopRingctrg 22758  TopDRingctdrg 22759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rex 3144  df-rab 3147  df-v 3497  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-iota 6309  df-fv 6358  df-ov 7153  df-drng 19498  df-tdrg 22763
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator