MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istlm Structured version   Visualization version   GIF version

Theorem istlm 22787
Description: The predicate "𝑊 is a topological left module". (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istlm.s · = ( ·sf𝑊)
istlm.j 𝐽 = (TopOpen‘𝑊)
istlm.f 𝐹 = (Scalar‘𝑊)
istlm.k 𝐾 = (TopOpen‘𝐹)
Assertion
Ref Expression
istlm (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))

Proof of Theorem istlm
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 anass 471 . 2 (((𝑊 ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) ↔ (𝑊 ∈ (TopMnd ∩ LMod) ∧ (𝐹 ∈ TopRing ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))))
2 df-3an 1085 . . . 4 ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod) ∧ 𝐹 ∈ TopRing))
3 elin 4168 . . . . 5 (𝑊 ∈ (TopMnd ∩ LMod) ↔ (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod))
43anbi1i 625 . . . 4 ((𝑊 ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod) ∧ 𝐹 ∈ TopRing))
52, 4bitr4i 280 . . 3 ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ↔ (𝑊 ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing))
65anbi1i 625 . 2 (((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) ↔ ((𝑊 ∈ (TopMnd ∩ LMod) ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))
7 fveq2 6664 . . . . . 6 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
8 istlm.f . . . . . 6 𝐹 = (Scalar‘𝑊)
97, 8syl6eqr 2874 . . . . 5 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
109eleq1d 2897 . . . 4 (𝑤 = 𝑊 → ((Scalar‘𝑤) ∈ TopRing ↔ 𝐹 ∈ TopRing))
11 fveq2 6664 . . . . . 6 (𝑤 = 𝑊 → ( ·sf𝑤) = ( ·sf𝑊))
12 istlm.s . . . . . 6 · = ( ·sf𝑊)
1311, 12syl6eqr 2874 . . . . 5 (𝑤 = 𝑊 → ( ·sf𝑤) = · )
149fveq2d 6668 . . . . . . . 8 (𝑤 = 𝑊 → (TopOpen‘(Scalar‘𝑤)) = (TopOpen‘𝐹))
15 istlm.k . . . . . . . 8 𝐾 = (TopOpen‘𝐹)
1614, 15syl6eqr 2874 . . . . . . 7 (𝑤 = 𝑊 → (TopOpen‘(Scalar‘𝑤)) = 𝐾)
17 fveq2 6664 . . . . . . . 8 (𝑤 = 𝑊 → (TopOpen‘𝑤) = (TopOpen‘𝑊))
18 istlm.j . . . . . . . 8 𝐽 = (TopOpen‘𝑊)
1917, 18syl6eqr 2874 . . . . . . 7 (𝑤 = 𝑊 → (TopOpen‘𝑤) = 𝐽)
2016, 19oveq12d 7168 . . . . . 6 (𝑤 = 𝑊 → ((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) = (𝐾 ×t 𝐽))
2120, 19oveq12d 7168 . . . . 5 (𝑤 = 𝑊 → (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)) = ((𝐾 ×t 𝐽) Cn 𝐽))
2213, 21eleq12d 2907 . . . 4 (𝑤 = 𝑊 → (( ·sf𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)) ↔ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))
2310, 22anbi12d 632 . . 3 (𝑤 = 𝑊 → (((Scalar‘𝑤) ∈ TopRing ∧ ( ·sf𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤))) ↔ (𝐹 ∈ TopRing ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))))
24 df-tlm 22764 . . 3 TopMod = {𝑤 ∈ (TopMnd ∩ LMod) ∣ ((Scalar‘𝑤) ∈ TopRing ∧ ( ·sf𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)))}
2523, 24elrab2 3682 . 2 (𝑊 ∈ TopMod ↔ (𝑊 ∈ (TopMnd ∩ LMod) ∧ (𝐹 ∈ TopRing ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))))
261, 6, 253bitr4ri 306 1 (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  cin 3934  cfv 6349  (class class class)co 7150  Scalarcsca 16562  TopOpenctopn 16689  LModclmod 19628   ·sf cscaf 19629   Cn ccn 21826   ×t ctx 22162  TopMndctmd 22672  TopRingctrg 22758  TopModctlm 22760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-iota 6308  df-fv 6357  df-ov 7153  df-tlm 22764
This theorem is referenced by:  vscacn  22788  tlmtmd  22789  tlmlmod  22791  tlmtrg  22792  nlmtlm  23297
  Copyright terms: Public domain W3C validator