Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istopclsd Structured version   Visualization version   GIF version

Theorem istopclsd 39290
Description: A closure function which satisfies sscls 21658, clsidm 21669, cls0 21682, and clsun 33671 defines a (unique) topology which it is the closure function on. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
istopclsd.b (𝜑𝐵𝑉)
istopclsd.f (𝜑𝐹:𝒫 𝐵⟶𝒫 𝐵)
istopclsd.e ((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥))
istopclsd.i ((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
istopclsd.z (𝜑 → (𝐹‘∅) = ∅)
istopclsd.u ((𝜑𝑥𝐵𝑦𝐵) → (𝐹‘(𝑥𝑦)) = ((𝐹𝑥) ∪ (𝐹𝑦)))
istopclsd.j 𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐹‘(𝐵𝑧)) = (𝐵𝑧)}
Assertion
Ref Expression
istopclsd (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ (cls‘𝐽) = 𝐹))
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐽,𝑦   𝑥,𝑉,𝑦,𝑧
Allowed substitution hint:   𝐽(𝑧)

Proof of Theorem istopclsd
StepHypRef Expression
1 istopclsd.j . . . 4 𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐹‘(𝐵𝑧)) = (𝐵𝑧)}
2 istopclsd.f . . . . . . . . 9 (𝜑𝐹:𝒫 𝐵⟶𝒫 𝐵)
32ffnd 6509 . . . . . . . 8 (𝜑𝐹 Fn 𝒫 𝐵)
43adantr 483 . . . . . . 7 ((𝜑𝑧 ∈ 𝒫 𝐵) → 𝐹 Fn 𝒫 𝐵)
5 difss 4107 . . . . . . . . 9 (𝐵𝑧) ⊆ 𝐵
6 istopclsd.b . . . . . . . . . 10 (𝜑𝐵𝑉)
7 elpw2g 5239 . . . . . . . . . 10 (𝐵𝑉 → ((𝐵𝑧) ∈ 𝒫 𝐵 ↔ (𝐵𝑧) ⊆ 𝐵))
86, 7syl 17 . . . . . . . . 9 (𝜑 → ((𝐵𝑧) ∈ 𝒫 𝐵 ↔ (𝐵𝑧) ⊆ 𝐵))
95, 8mpbiri 260 . . . . . . . 8 (𝜑 → (𝐵𝑧) ∈ 𝒫 𝐵)
109adantr 483 . . . . . . 7 ((𝜑𝑧 ∈ 𝒫 𝐵) → (𝐵𝑧) ∈ 𝒫 𝐵)
11 fnelfp 6931 . . . . . . 7 ((𝐹 Fn 𝒫 𝐵 ∧ (𝐵𝑧) ∈ 𝒫 𝐵) → ((𝐵𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝐵𝑧)) = (𝐵𝑧)))
124, 10, 11syl2anc 586 . . . . . 6 ((𝜑𝑧 ∈ 𝒫 𝐵) → ((𝐵𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝐵𝑧)) = (𝐵𝑧)))
1312bicomd 225 . . . . 5 ((𝜑𝑧 ∈ 𝒫 𝐵) → ((𝐹‘(𝐵𝑧)) = (𝐵𝑧) ↔ (𝐵𝑧) ∈ dom (𝐹 ∩ I )))
1413rabbidva 3478 . . . 4 (𝜑 → {𝑧 ∈ 𝒫 𝐵 ∣ (𝐹‘(𝐵𝑧)) = (𝐵𝑧)} = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )})
151, 14syl5eq 2868 . . 3 (𝜑𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )})
16 istopclsd.e . . . . . 6 ((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥))
17 simp1 1132 . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝑥) → 𝜑)
18 simp2 1133 . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝑥) → 𝑥𝐵)
19 simp3 1134 . . . . . . . . . 10 ((𝜑𝑥𝐵𝑦𝑥) → 𝑦𝑥)
2019, 18sstrd 3976 . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝑥) → 𝑦𝐵)
21 istopclsd.u . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝐵) → (𝐹‘(𝑥𝑦)) = ((𝐹𝑥) ∪ (𝐹𝑦)))
2217, 18, 20, 21syl3anc 1367 . . . . . . . 8 ((𝜑𝑥𝐵𝑦𝑥) → (𝐹‘(𝑥𝑦)) = ((𝐹𝑥) ∪ (𝐹𝑦)))
23 ssequn2 4158 . . . . . . . . . . 11 (𝑦𝑥 ↔ (𝑥𝑦) = 𝑥)
2423biimpi 218 . . . . . . . . . 10 (𝑦𝑥 → (𝑥𝑦) = 𝑥)
25243ad2ant3 1131 . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝑥) → (𝑥𝑦) = 𝑥)
2625fveq2d 6668 . . . . . . . 8 ((𝜑𝑥𝐵𝑦𝑥) → (𝐹‘(𝑥𝑦)) = (𝐹𝑥))
2722, 26eqtr3d 2858 . . . . . . 7 ((𝜑𝑥𝐵𝑦𝑥) → ((𝐹𝑥) ∪ (𝐹𝑦)) = (𝐹𝑥))
28 ssequn2 4158 . . . . . . 7 ((𝐹𝑦) ⊆ (𝐹𝑥) ↔ ((𝐹𝑥) ∪ (𝐹𝑦)) = (𝐹𝑥))
2927, 28sylibr 236 . . . . . 6 ((𝜑𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥))
30 istopclsd.i . . . . . 6 ((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
316, 2, 16, 29, 30ismrcd1 39288 . . . . 5 (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵))
32 istopclsd.z . . . . . 6 (𝜑 → (𝐹‘∅) = ∅)
33 0elpw 5248 . . . . . . 7 ∅ ∈ 𝒫 𝐵
34 fnelfp 6931 . . . . . . 7 ((𝐹 Fn 𝒫 𝐵 ∧ ∅ ∈ 𝒫 𝐵) → (∅ ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘∅) = ∅))
353, 33, 34sylancl 588 . . . . . 6 (𝜑 → (∅ ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘∅) = ∅))
3632, 35mpbird 259 . . . . 5 (𝜑 → ∅ ∈ dom (𝐹 ∩ I ))
37 simp1 1132 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝜑)
38 inss1 4204 . . . . . . . . . . . . 13 (𝐹 ∩ I ) ⊆ 𝐹
39 dmss 5765 . . . . . . . . . . . . 13 ((𝐹 ∩ I ) ⊆ 𝐹 → dom (𝐹 ∩ I ) ⊆ dom 𝐹)
4038, 39ax-mp 5 . . . . . . . . . . . 12 dom (𝐹 ∩ I ) ⊆ dom 𝐹
4140, 2fssdm 6524 . . . . . . . . . . 11 (𝜑 → dom (𝐹 ∩ I ) ⊆ 𝒫 𝐵)
42413ad2ant1 1129 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → dom (𝐹 ∩ I ) ⊆ 𝒫 𝐵)
43 simp2 1133 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑥 ∈ dom (𝐹 ∩ I ))
4442, 43sseldd 3967 . . . . . . . . 9 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑥 ∈ 𝒫 𝐵)
4544elpwid 4552 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑥𝐵)
46 simp3 1134 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑦 ∈ dom (𝐹 ∩ I ))
4742, 46sseldd 3967 . . . . . . . . 9 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑦 ∈ 𝒫 𝐵)
4847elpwid 4552 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑦𝐵)
4937, 45, 48, 21syl3anc 1367 . . . . . . 7 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝐹‘(𝑥𝑦)) = ((𝐹𝑥) ∪ (𝐹𝑦)))
5033ad2ant1 1129 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝐹 Fn 𝒫 𝐵)
51 fnelfp 6931 . . . . . . . . . 10 ((𝐹 Fn 𝒫 𝐵𝑥 ∈ 𝒫 𝐵) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑥) = 𝑥))
5250, 44, 51syl2anc 586 . . . . . . . . 9 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑥) = 𝑥))
5343, 52mpbid 234 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝐹𝑥) = 𝑥)
54 fnelfp 6931 . . . . . . . . . 10 ((𝐹 Fn 𝒫 𝐵𝑦 ∈ 𝒫 𝐵) → (𝑦 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑦) = 𝑦))
5550, 47, 54syl2anc 586 . . . . . . . . 9 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑦 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑦) = 𝑦))
5646, 55mpbid 234 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝐹𝑦) = 𝑦)
5753, 56uneq12d 4139 . . . . . . 7 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → ((𝐹𝑥) ∪ (𝐹𝑦)) = (𝑥𝑦))
5849, 57eqtrd 2856 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝐹‘(𝑥𝑦)) = (𝑥𝑦))
5945, 48unssd 4161 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑥𝑦) ⊆ 𝐵)
60 vex 3497 . . . . . . . . . 10 𝑥 ∈ V
61 vex 3497 . . . . . . . . . 10 𝑦 ∈ V
6260, 61unex 7463 . . . . . . . . 9 (𝑥𝑦) ∈ V
6362elpw 4545 . . . . . . . 8 ((𝑥𝑦) ∈ 𝒫 𝐵 ↔ (𝑥𝑦) ⊆ 𝐵)
6459, 63sylibr 236 . . . . . . 7 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑥𝑦) ∈ 𝒫 𝐵)
65 fnelfp 6931 . . . . . . 7 ((𝐹 Fn 𝒫 𝐵 ∧ (𝑥𝑦) ∈ 𝒫 𝐵) → ((𝑥𝑦) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝑥𝑦)) = (𝑥𝑦)))
6650, 64, 65syl2anc 586 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → ((𝑥𝑦) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝑥𝑦)) = (𝑥𝑦)))
6758, 66mpbird 259 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑥𝑦) ∈ dom (𝐹 ∩ I ))
68 eqid 2821 . . . . 5 {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )} = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )}
6931, 36, 67, 68mretopd 21694 . . . 4 (𝜑 → ({𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )} ∈ (TopOn‘𝐵) ∧ dom (𝐹 ∩ I ) = (Clsd‘{𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )})))
7069simpld 497 . . 3 (𝜑 → {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )} ∈ (TopOn‘𝐵))
7115, 70eqeltrd 2913 . 2 (𝜑𝐽 ∈ (TopOn‘𝐵))
72 topontop 21515 . . . . . 6 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
7371, 72syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
74 eqid 2821 . . . . . 6 (mrCls‘(Clsd‘𝐽)) = (mrCls‘(Clsd‘𝐽))
7574mrccls 21681 . . . . 5 (𝐽 ∈ Top → (cls‘𝐽) = (mrCls‘(Clsd‘𝐽)))
7673, 75syl 17 . . . 4 (𝜑 → (cls‘𝐽) = (mrCls‘(Clsd‘𝐽)))
7769simprd 498 . . . . . 6 (𝜑 → dom (𝐹 ∩ I ) = (Clsd‘{𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )}))
7815fveq2d 6668 . . . . . 6 (𝜑 → (Clsd‘𝐽) = (Clsd‘{𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )}))
7977, 78eqtr4d 2859 . . . . 5 (𝜑 → dom (𝐹 ∩ I ) = (Clsd‘𝐽))
8079fveq2d 6668 . . . 4 (𝜑 → (mrCls‘dom (𝐹 ∩ I )) = (mrCls‘(Clsd‘𝐽)))
8176, 80eqtr4d 2859 . . 3 (𝜑 → (cls‘𝐽) = (mrCls‘dom (𝐹 ∩ I )))
826, 2, 16, 29, 30ismrcd2 39289 . . 3 (𝜑𝐹 = (mrCls‘dom (𝐹 ∩ I )))
8381, 82eqtr4d 2859 . 2 (𝜑 → (cls‘𝐽) = 𝐹)
8471, 83jca 514 1 (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ (cls‘𝐽) = 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  {crab 3142  cdif 3932  cun 3933  cin 3934  wss 3935  c0 4290  𝒫 cpw 4538   I cid 5453  dom cdm 5549   Fn wfn 6344  wf 6345  cfv 6349  mrClscmrc 16848  Topctop 21495  TopOnctopon 21512  Clsdccld 21618  clsccl 21620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-mre 16851  df-mrc 16852  df-top 21496  df-topon 21513  df-cld 21621  df-cls 21623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator