Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istotbnd Structured version   Visualization version   GIF version

Theorem istotbnd 35041
Description: The predicate "is a totally bounded metric space". (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
istotbnd (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
Distinct variable groups:   𝑏,𝑑,𝑣,𝑥,𝑀   𝑋,𝑏,𝑑,𝑣,𝑥

Proof of Theorem istotbnd
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6697 . 2 (𝑀 ∈ (TotBnd‘𝑋) → 𝑋 ∈ V)
2 elfvex 6697 . . 3 (𝑀 ∈ (Met‘𝑋) → 𝑋 ∈ V)
32adantr 483 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) → 𝑋 ∈ V)
4 fveq2 6664 . . . . . 6 (𝑦 = 𝑋 → (Met‘𝑦) = (Met‘𝑋))
5 eqeq2 2833 . . . . . . . . 9 (𝑦 = 𝑋 → ( 𝑣 = 𝑦 𝑣 = 𝑋))
6 rexeq 3406 . . . . . . . . . 10 (𝑦 = 𝑋 → (∃𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)))
76ralbidv 3197 . . . . . . . . 9 (𝑦 = 𝑋 → (∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)))
85, 7anbi12d 632 . . . . . . . 8 (𝑦 = 𝑋 → (( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))))
98rexbidv 3297 . . . . . . 7 (𝑦 = 𝑋 → (∃𝑣 ∈ Fin ( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∃𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))))
109ralbidv 3197 . . . . . 6 (𝑦 = 𝑋 → (∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))))
114, 10rabeqbidv 3485 . . . . 5 (𝑦 = 𝑋 → {𝑚 ∈ (Met‘𝑦) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑))} = {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))})
12 df-totbnd 35040 . . . . 5 TotBnd = (𝑦 ∈ V ↦ {𝑚 ∈ (Met‘𝑦) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑))})
13 fvex 6677 . . . . . 6 (Met‘𝑋) ∈ V
1413rabex 5227 . . . . 5 {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))} ∈ V
1511, 12, 14fvmpt 6762 . . . 4 (𝑋 ∈ V → (TotBnd‘𝑋) = {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))})
1615eleq2d 2898 . . 3 (𝑋 ∈ V → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))}))
17 fveq2 6664 . . . . . . . . . . 11 (𝑚 = 𝑀 → (ball‘𝑚) = (ball‘𝑀))
1817oveqd 7167 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑥(ball‘𝑚)𝑑) = (𝑥(ball‘𝑀)𝑑))
1918eqeq2d 2832 . . . . . . . . 9 (𝑚 = 𝑀 → (𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ 𝑏 = (𝑥(ball‘𝑀)𝑑)))
2019rexbidv 3297 . . . . . . . 8 (𝑚 = 𝑀 → (∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
2120ralbidv 3197 . . . . . . 7 (𝑚 = 𝑀 → (∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
2221anbi2d 630 . . . . . 6 (𝑚 = 𝑀 → (( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
2322rexbidv 3297 . . . . 5 (𝑚 = 𝑀 → (∃𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∃𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
2423ralbidv 3197 . . . 4 (𝑚 = 𝑀 → (∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
2524elrab 3679 . . 3 (𝑀 ∈ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))} ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
2616, 25syl6bb 289 . 2 (𝑋 ∈ V → (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))))
271, 3, 26pm5.21nii 382 1 (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  {crab 3142  Vcvv 3494   cuni 4831  cfv 6349  (class class class)co 7150  Fincfn 8503  +crp 12383  Metcmet 20525  ballcbl 20526  TotBndctotbnd 35038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-iota 6308  df-fun 6351  df-fv 6357  df-ov 7153  df-totbnd 35040
This theorem is referenced by:  istotbnd2  35042  istotbnd3  35043  totbndmet  35044  totbndss  35049  heibor1  35082  heibor  35093
  Copyright terms: Public domain W3C validator