Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istotbnd3 Structured version   Visualization version   GIF version

Theorem istotbnd3 33188
Description: A metric space is totally bounded iff there is a finite ε-net for every positive ε. This differs from the definition in providing a finite set of ball centers rather than a finite set of balls. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
istotbnd3 (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
Distinct variable groups:   𝑣,𝑑,𝑥,𝑀   𝑋,𝑑,𝑣,𝑥

Proof of Theorem istotbnd3
Dummy variables 𝑏 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istotbnd 33186 . 2 (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑤 ∈ Fin ( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
2 oveq1 6612 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑏) → (𝑥(ball‘𝑀)𝑑) = ((𝑓𝑏)(ball‘𝑀)𝑑))
32eqeq2d 2636 . . . . . . . . . . 11 (𝑥 = (𝑓𝑏) → (𝑏 = (𝑥(ball‘𝑀)𝑑) ↔ 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
43ac6sfi 8149 . . . . . . . . . 10 ((𝑤 ∈ Fin ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑓(𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
54ex 450 . . . . . . . . 9 (𝑤 ∈ Fin → (∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑓(𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))))
65ad2antlr 762 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ 𝑤 = 𝑋) → (∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑓(𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))))
7 simprrl 803 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → 𝑓:𝑤𝑋)
8 frn 6012 . . . . . . . . . . . . 13 (𝑓:𝑤𝑋 → ran 𝑓𝑋)
97, 8syl 17 . . . . . . . . . . . 12 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → ran 𝑓𝑋)
10 simplr 791 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → 𝑤 ∈ Fin)
11 ffn 6004 . . . . . . . . . . . . . . 15 (𝑓:𝑤𝑋𝑓 Fn 𝑤)
127, 11syl 17 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → 𝑓 Fn 𝑤)
13 dffn4 6080 . . . . . . . . . . . . . 14 (𝑓 Fn 𝑤𝑓:𝑤onto→ran 𝑓)
1412, 13sylib 208 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → 𝑓:𝑤onto→ran 𝑓)
15 fofi 8197 . . . . . . . . . . . . 13 ((𝑤 ∈ Fin ∧ 𝑓:𝑤onto→ran 𝑓) → ran 𝑓 ∈ Fin)
1610, 14, 15syl2anc 692 . . . . . . . . . . . 12 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → ran 𝑓 ∈ Fin)
17 elfpw 8213 . . . . . . . . . . . 12 (ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin) ↔ (ran 𝑓𝑋 ∧ ran 𝑓 ∈ Fin))
189, 16, 17sylanbrc 697 . . . . . . . . . . 11 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin))
192eleq2d 2689 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑓𝑏) → (𝑣 ∈ (𝑥(ball‘𝑀)𝑑) ↔ 𝑣 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑)))
2019rexrn 6318 . . . . . . . . . . . . . . 15 (𝑓 Fn 𝑤 → (∃𝑥 ∈ ran 𝑓 𝑣 ∈ (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑏𝑤 𝑣 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑)))
2112, 20syl 17 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → (∃𝑥 ∈ ran 𝑓 𝑣 ∈ (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑏𝑤 𝑣 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑)))
22 eliun 4495 . . . . . . . . . . . . . 14 (𝑣 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) ↔ ∃𝑥 ∈ ran 𝑓 𝑣 ∈ (𝑥(ball‘𝑀)𝑑))
23 eliun 4495 . . . . . . . . . . . . . 14 (𝑣 𝑏𝑤 ((𝑓𝑏)(ball‘𝑀)𝑑) ↔ ∃𝑏𝑤 𝑣 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑))
2421, 22, 233bitr4g 303 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → (𝑣 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) ↔ 𝑣 𝑏𝑤 ((𝑓𝑏)(ball‘𝑀)𝑑)))
2524eqrdv 2624 . . . . . . . . . . . 12 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑏𝑤 ((𝑓𝑏)(ball‘𝑀)𝑑))
26 simprrr 804 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))
27 iuneq2 4508 . . . . . . . . . . . . 13 (∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑) → 𝑏𝑤 𝑏 = 𝑏𝑤 ((𝑓𝑏)(ball‘𝑀)𝑑))
2826, 27syl 17 . . . . . . . . . . . 12 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → 𝑏𝑤 𝑏 = 𝑏𝑤 ((𝑓𝑏)(ball‘𝑀)𝑑))
29 uniiun 4544 . . . . . . . . . . . . 13 𝑤 = 𝑏𝑤 𝑏
30 simprl 793 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → 𝑤 = 𝑋)
3129, 30syl5eqr 2674 . . . . . . . . . . . 12 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → 𝑏𝑤 𝑏 = 𝑋)
3225, 28, 313eqtr2d 2666 . . . . . . . . . . 11 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑋)
33 iuneq1 4505 . . . . . . . . . . . . 13 (𝑣 = ran 𝑓 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑))
3433eqeq1d 2628 . . . . . . . . . . . 12 (𝑣 = ran 𝑓 → ( 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑋))
3534rspcev 3300 . . . . . . . . . . 11 ((ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑋) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)
3618, 32, 35syl2anc 692 . . . . . . . . . 10 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)
3736expr 642 . . . . . . . . 9 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ 𝑤 = 𝑋) → ((𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
3837exlimdv 1863 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ 𝑤 = 𝑋) → (∃𝑓(𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
396, 38syld 47 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ 𝑤 = 𝑋) → (∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
4039expimpd 628 . . . . . 6 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) → (( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
4140rexlimdva 3029 . . . . 5 (𝑀 ∈ (Met‘𝑋) → (∃𝑤 ∈ Fin ( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
42 elfpw 8213 . . . . . . . . . . 11 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣𝑋𝑣 ∈ Fin))
4342simprbi 480 . . . . . . . . . 10 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣 ∈ Fin)
4443ad2antrl 763 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → 𝑣 ∈ Fin)
45 mptfi 8210 . . . . . . . . 9 (𝑣 ∈ Fin → (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
46 rnfi 8194 . . . . . . . . 9 ((𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin → ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
4744, 45, 463syl 18 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
48 ovex 6633 . . . . . . . . . 10 (𝑥(ball‘𝑀)𝑑) ∈ V
4948dfiun3 5344 . . . . . . . . 9 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑))
50 simprr 795 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)
5149, 50syl5eqr 2674 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = 𝑋)
52 eqid 2626 . . . . . . . . . 10 (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑))
5352rnmpt 5335 . . . . . . . . 9 ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = {𝑏 ∣ ∃𝑥𝑣 𝑏 = (𝑥(ball‘𝑀)𝑑)}
5442simplbi 476 . . . . . . . . . . . 12 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣𝑋)
5554ad2antrl 763 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → 𝑣𝑋)
56 ssrexv 3651 . . . . . . . . . . 11 (𝑣𝑋 → (∃𝑥𝑣 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
5755, 56syl 17 . . . . . . . . . 10 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → (∃𝑥𝑣 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
5857ss2abdv 3659 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → {𝑏 ∣ ∃𝑥𝑣 𝑏 = (𝑥(ball‘𝑀)𝑑)} ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})
5953, 58syl5eqss 3633 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})
60 unieq 4415 . . . . . . . . . . 11 (𝑤 = ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → 𝑤 = ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)))
6160eqeq1d 2628 . . . . . . . . . 10 (𝑤 = ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → ( 𝑤 = 𝑋 ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = 𝑋))
62 ssabral 3657 . . . . . . . . . . 11 (𝑤 ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)} ↔ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))
63 sseq1 3610 . . . . . . . . . . 11 (𝑤 = ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → (𝑤 ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)} ↔ ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}))
6462, 63syl5bbr 274 . . . . . . . . . 10 (𝑤 = ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → (∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) ↔ ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}))
6561, 64anbi12d 746 . . . . . . . . 9 (𝑤 = ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → (( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) ↔ ( ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = 𝑋 ∧ ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})))
6665rspcev 3300 . . . . . . . 8 ((ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin ∧ ( ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = 𝑋 ∧ ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})) → ∃𝑤 ∈ Fin ( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
6747, 51, 59, 66syl12anc 1321 . . . . . . 7 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → ∃𝑤 ∈ Fin ( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
6867expr 642 . . . . . 6 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → ( 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 → ∃𝑤 ∈ Fin ( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
6968rexlimdva 3029 . . . . 5 (𝑀 ∈ (Met‘𝑋) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 → ∃𝑤 ∈ Fin ( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
7041, 69impbid 202 . . . 4 (𝑀 ∈ (Met‘𝑋) → (∃𝑤 ∈ Fin ( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) ↔ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
7170ralbidv 2985 . . 3 (𝑀 ∈ (Met‘𝑋) → (∀𝑑 ∈ ℝ+𝑤 ∈ Fin ( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
7271pm5.32i 668 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑤 ∈ Fin ( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
731, 72bitri 264 1 (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1992  {cab 2612  wral 2912  wrex 2913  cin 3559  wss 3560  𝒫 cpw 4135   cuni 4407   ciun 4490  cmpt 4678  ran crn 5080   Fn wfn 5845  wf 5846  ontowfo 5848  cfv 5850  (class class class)co 6605  Fincfn 7900  +crp 11776  Metcme 19646  ballcbl 19647  TotBndctotbnd 33183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-fin 7904  df-totbnd 33185
This theorem is referenced by:  0totbnd  33190  sstotbnd2  33191  equivtotbnd  33195  totbndbnd  33206  prdstotbnd  33211
  Copyright terms: Public domain W3C validator