![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istpsi | Structured version Visualization version GIF version |
Description: Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.) |
Ref | Expression |
---|---|
istpsi.b | ⊢ (Base‘𝐾) = 𝐴 |
istpsi.j | ⊢ (TopOpen‘𝐾) = 𝐽 |
istpsi.1 | ⊢ 𝐴 = ∪ 𝐽 |
istpsi.2 | ⊢ 𝐽 ∈ Top |
Ref | Expression |
---|---|
istpsi | ⊢ 𝐾 ∈ TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istpsi.2 | . 2 ⊢ 𝐽 ∈ Top | |
2 | istpsi.1 | . 2 ⊢ 𝐴 = ∪ 𝐽 | |
3 | istpsi.b | . . . 4 ⊢ (Base‘𝐾) = 𝐴 | |
4 | 3 | eqcomi 2660 | . . 3 ⊢ 𝐴 = (Base‘𝐾) |
5 | istpsi.j | . . . 4 ⊢ (TopOpen‘𝐾) = 𝐽 | |
6 | 5 | eqcomi 2660 | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) |
7 | 4, 6 | istps2 20787 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽)) |
8 | 1, 2, 7 | mpbir2an 975 | 1 ⊢ 𝐾 ∈ TopSp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 ∪ cuni 4468 ‘cfv 5926 Basecbs 15904 TopOpenctopn 16129 Topctop 20746 TopSpctps 20784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-top 20747 df-topon 20764 df-topsp 20785 |
This theorem is referenced by: indistps2 20864 |
Copyright terms: Public domain | W3C validator |