MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkg3ld Structured version   Visualization version   GIF version

Theorem istrkg3ld 25277
Description: Property of fulfilling the lower dimension 3 axiom. (Contributed by Thierry Arnoux, 12-Jul-2020.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Base‘𝐺)
istrkg.d = (dist‘𝐺)
istrkg.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
istrkg3ld (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦,𝑧,𝐼   𝑢,𝑃,𝑣,𝑥,𝑦,𝑧   𝑢, ,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧,𝑣,𝑢)   𝑉(𝑥,𝑦,𝑧,𝑣,𝑢)

Proof of Theorem istrkg3ld
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3z 11362 . . . . 5 3 ∈ ℤ
2 2re 11042 . . . . . 6 2 ∈ ℝ
3 3re 11046 . . . . . 6 3 ∈ ℝ
4 2lt3 11147 . . . . . 6 2 < 3
52, 3, 4ltleii 10112 . . . . 5 2 ≤ 3
6 2z 11361 . . . . . 6 2 ∈ ℤ
76eluz1i 11647 . . . . 5 (3 ∈ (ℤ‘2) ↔ (3 ∈ ℤ ∧ 2 ≤ 3))
81, 5, 7mpbir2an 954 . . . 4 3 ∈ (ℤ‘2)
98a1i 11 . . 3 (𝐺𝑉 → 3 ∈ (ℤ‘2))
10 istrkg.p . . . 4 𝑃 = (Base‘𝐺)
11 istrkg.d . . . 4 = (dist‘𝐺)
12 istrkg.i . . . 4 𝐼 = (Itv‘𝐺)
1310, 11, 12istrkgld 25275 . . 3 ((𝐺𝑉 ∧ 3 ∈ (ℤ‘2)) → (𝐺DimTarskiG≥3 ↔ ∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
149, 13mpdan 701 . 2 (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
15 fzo13pr 12501 . . . . . 6 (1..^3) = {1, 2}
16 f1eq2 6059 . . . . . 6 ((1..^3) = {1, 2} → (𝑓:(1..^3)–1-1𝑃𝑓:{1, 2}–1-1𝑃))
1715, 16ax-mp 5 . . . . 5 (𝑓:(1..^3)–1-1𝑃𝑓:{1, 2}–1-1𝑃)
1817anbi1i 730 . . . 4 ((𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ (𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1918exbii 1771 . . 3 (∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
2019a1i 11 . 2 (𝐺𝑉 → (∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
21 1z 11359 . . . 4 1 ∈ ℤ
22 1ne2 11192 . . . 4 1 ≠ 2
23 oveq1 6617 . . . . . . . . . . 11 (𝑢 = (𝑓‘1) → (𝑢 𝑥) = ((𝑓‘1) 𝑥))
24 eqidd 2622 . . . . . . . . . . 11 (𝑢 = (𝑓‘1) → (𝑣 𝑥) = (𝑣 𝑥))
2523, 24eqeq12d 2636 . . . . . . . . . 10 (𝑢 = (𝑓‘1) → ((𝑢 𝑥) = (𝑣 𝑥) ↔ ((𝑓‘1) 𝑥) = (𝑣 𝑥)))
26 oveq1 6617 . . . . . . . . . . 11 (𝑢 = (𝑓‘1) → (𝑢 𝑦) = ((𝑓‘1) 𝑦))
27 eqidd 2622 . . . . . . . . . . 11 (𝑢 = (𝑓‘1) → (𝑣 𝑦) = (𝑣 𝑦))
2826, 27eqeq12d 2636 . . . . . . . . . 10 (𝑢 = (𝑓‘1) → ((𝑢 𝑦) = (𝑣 𝑦) ↔ ((𝑓‘1) 𝑦) = (𝑣 𝑦)))
29 oveq1 6617 . . . . . . . . . . 11 (𝑢 = (𝑓‘1) → (𝑢 𝑧) = ((𝑓‘1) 𝑧))
30 eqidd 2622 . . . . . . . . . . 11 (𝑢 = (𝑓‘1) → (𝑣 𝑧) = (𝑣 𝑧))
3129, 30eqeq12d 2636 . . . . . . . . . 10 (𝑢 = (𝑓‘1) → ((𝑢 𝑧) = (𝑣 𝑧) ↔ ((𝑓‘1) 𝑧) = (𝑣 𝑧)))
3225, 28, 313anbi123d 1396 . . . . . . . . 9 (𝑢 = (𝑓‘1) → (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ↔ (((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧))))
3332anbi1d 740 . . . . . . . 8 (𝑢 = (𝑓‘1) → ((((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
3433rexbidv 3046 . . . . . . 7 (𝑢 = (𝑓‘1) → (∃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
3534rexbidv 3046 . . . . . 6 (𝑢 = (𝑓‘1) → (∃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑦𝑃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
3635rexbidv 3046 . . . . 5 (𝑢 = (𝑓‘1) → (∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
37 oveq1 6617 . . . . . . . . . . . 12 (𝑣 = (𝑓‘2) → (𝑣 𝑥) = ((𝑓‘2) 𝑥))
3837eqeq2d 2631 . . . . . . . . . . 11 (𝑣 = (𝑓‘2) → (((𝑓‘1) 𝑥) = (𝑣 𝑥) ↔ ((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥)))
39 oveq1 6617 . . . . . . . . . . . 12 (𝑣 = (𝑓‘2) → (𝑣 𝑦) = ((𝑓‘2) 𝑦))
4039eqeq2d 2631 . . . . . . . . . . 11 (𝑣 = (𝑓‘2) → (((𝑓‘1) 𝑦) = (𝑣 𝑦) ↔ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦)))
41 oveq1 6617 . . . . . . . . . . . 12 (𝑣 = (𝑓‘2) → (𝑣 𝑧) = ((𝑓‘2) 𝑧))
4241eqeq2d 2631 . . . . . . . . . . 11 (𝑣 = (𝑓‘2) → (((𝑓‘1) 𝑧) = (𝑣 𝑧) ↔ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
4338, 40, 423anbi123d 1396 . . . . . . . . . 10 (𝑣 = (𝑓‘2) → ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧))))
44 2p1e3 11103 . . . . . . . . . . . . . 14 (2 + 1) = 3
4544oveq2i 6621 . . . . . . . . . . . . 13 (2..^(2 + 1)) = (2..^3)
46 fzosn 12487 . . . . . . . . . . . . . 14 (2 ∈ ℤ → (2..^(2 + 1)) = {2})
476, 46ax-mp 5 . . . . . . . . . . . . 13 (2..^(2 + 1)) = {2}
4845, 47eqtr3i 2645 . . . . . . . . . . . 12 (2..^3) = {2}
4948raleqi 3134 . . . . . . . . . . 11 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ ∀𝑗 ∈ {2} (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)))
50 fveq2 6153 . . . . . . . . . . . . . . . 16 (𝑗 = 2 → (𝑓𝑗) = (𝑓‘2))
5150oveq1d 6625 . . . . . . . . . . . . . . 15 (𝑗 = 2 → ((𝑓𝑗) 𝑥) = ((𝑓‘2) 𝑥))
5251eqeq2d 2631 . . . . . . . . . . . . . 14 (𝑗 = 2 → (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ↔ ((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥)))
5350oveq1d 6625 . . . . . . . . . . . . . . 15 (𝑗 = 2 → ((𝑓𝑗) 𝑦) = ((𝑓‘2) 𝑦))
5453eqeq2d 2631 . . . . . . . . . . . . . 14 (𝑗 = 2 → (((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ↔ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦)))
5550oveq1d 6625 . . . . . . . . . . . . . . 15 (𝑗 = 2 → ((𝑓𝑗) 𝑧) = ((𝑓‘2) 𝑧))
5655eqeq2d 2631 . . . . . . . . . . . . . 14 (𝑗 = 2 → (((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧) ↔ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
5752, 54, 563anbi123d 1396 . . . . . . . . . . . . 13 (𝑗 = 2 → ((((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧))))
5857ralsng 4194 . . . . . . . . . . . 12 (2 ∈ ℤ → (∀𝑗 ∈ {2} (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧))))
596, 58ax-mp 5 . . . . . . . . . . 11 (∀𝑗 ∈ {2} (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
6049, 59bitri 264 . . . . . . . . . 10 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
6143, 60syl6bbr 278 . . . . . . . . 9 (𝑣 = (𝑓‘2) → ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ↔ ∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧))))
6261anbi1d 740 . . . . . . . 8 (𝑣 = (𝑓‘2) → (((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
6362rexbidv 3046 . . . . . . 7 (𝑣 = (𝑓‘2) → (∃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
6463rexbidv 3046 . . . . . 6 (𝑣 = (𝑓‘2) → (∃𝑦𝑃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
6564rexbidv 3046 . . . . 5 (𝑣 = (𝑓‘2) → (∃𝑥𝑃𝑦𝑃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
6636, 65f1prex 6499 . . . 4 ((1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 1 ≠ 2) → (∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
6721, 6, 22, 66mp3an 1421 . . 3 (∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
6867a1i 11 . 2 (𝐺𝑉 → (∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
6914, 20, 683bitrd 294 1 (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3o 1035  w3a 1036   = wceq 1480  wex 1701  wcel 1987  wne 2790  wral 2907  wrex 2908  {csn 4153  {cpr 4155   class class class wbr 4618  1-1wf1 5849  cfv 5852  (class class class)co 6610  1c1 9889   + caddc 9891  cle 10027  2c2 11022  3c3 11023  cz 11329  cuz 11639  ..^cfzo 12414  Basecbs 15792  distcds 15882  DimTarskiGcstrkgld 25250  Itvcitv 25252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-fz 12277  df-fzo 12415  df-trkgld 25268
This theorem is referenced by:  axtgupdim2  25287
  Copyright terms: Public domain W3C validator