MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuc1p Structured version   Visualization version   GIF version

Theorem isuc1p 24728
Description: Being a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
uc1pval.p 𝑃 = (Poly1𝑅)
uc1pval.b 𝐵 = (Base‘𝑃)
uc1pval.z 0 = (0g𝑃)
uc1pval.d 𝐷 = ( deg1𝑅)
uc1pval.c 𝐶 = (Unic1p𝑅)
uc1pval.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
isuc1p (𝐹𝐶 ↔ (𝐹𝐵𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈))

Proof of Theorem isuc1p
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 neeq1 3078 . . . 4 (𝑓 = 𝐹 → (𝑓0𝐹0 ))
2 fveq2 6664 . . . . . 6 (𝑓 = 𝐹 → (coe1𝑓) = (coe1𝐹))
3 fveq2 6664 . . . . . 6 (𝑓 = 𝐹 → (𝐷𝑓) = (𝐷𝐹))
42, 3fveq12d 6671 . . . . 5 (𝑓 = 𝐹 → ((coe1𝑓)‘(𝐷𝑓)) = ((coe1𝐹)‘(𝐷𝐹)))
54eleq1d 2897 . . . 4 (𝑓 = 𝐹 → (((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈 ↔ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈))
61, 5anbi12d 632 . . 3 (𝑓 = 𝐹 → ((𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈) ↔ (𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈)))
7 uc1pval.p . . . 4 𝑃 = (Poly1𝑅)
8 uc1pval.b . . . 4 𝐵 = (Base‘𝑃)
9 uc1pval.z . . . 4 0 = (0g𝑃)
10 uc1pval.d . . . 4 𝐷 = ( deg1𝑅)
11 uc1pval.c . . . 4 𝐶 = (Unic1p𝑅)
12 uc1pval.u . . . 4 𝑈 = (Unit‘𝑅)
137, 8, 9, 10, 11, 12uc1pval 24727 . . 3 𝐶 = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)}
146, 13elrab2 3682 . 2 (𝐹𝐶 ↔ (𝐹𝐵 ∧ (𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈)))
15 3anass 1091 . 2 ((𝐹𝐵𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈) ↔ (𝐹𝐵 ∧ (𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈)))
1614, 15bitr4i 280 1 (𝐹𝐶 ↔ (𝐹𝐵𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  cfv 6349  Basecbs 16477  0gc0g 16707  Unitcui 19383  Poly1cpl1 20339  coe1cco1 20340   deg1 cdg1 24642  Unic1pcuc1p 24714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-iota 6308  df-fun 6351  df-fv 6357  df-slot 16481  df-base 16483  df-uc1p 24719
This theorem is referenced by:  uc1pcl  24731  uc1pn0  24733  uc1pldg  24736  mon1puc1p  24738  drnguc1p  24758
  Copyright terms: Public domain W3C validator