MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumclim3 Structured version   Visualization version   GIF version

Theorem isumclim3 15108
Description: The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumclim3.1 𝑍 = (ℤ𝑀)
isumclim3.2 (𝜑𝑀 ∈ ℤ)
isumclim3.3 (𝜑𝐹 ∈ dom ⇝ )
isumclim3.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumclim3.5 ((𝜑𝑗𝑍) → (𝐹𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
Assertion
Ref Expression
isumclim3 (𝜑𝐹 ⇝ Σ𝑘𝑍 𝐴)
Distinct variable groups:   𝐴,𝑗   𝑗,𝑘,𝑀   𝜑,𝑗,𝑘   𝑗,𝑍,𝑘   𝑗,𝐹
Allowed substitution hints:   𝐴(𝑘)   𝐹(𝑘)

Proof of Theorem isumclim3
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumclim3.3 . . 3 (𝜑𝐹 ∈ dom ⇝ )
2 climdm 14905 . . 3 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
31, 2sylib 220 . 2 (𝜑𝐹 ⇝ ( ⇝ ‘𝐹))
4 sumfc 15060 . . . 4 Σ𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = Σ𝑘𝑍 𝐴
5 isumclim3.1 . . . . 5 𝑍 = (ℤ𝑀)
6 isumclim3.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
7 eqidd 2822 . . . . 5 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
8 isumclim3.4 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
98fmpttd 6873 . . . . . 6 (𝜑 → (𝑘𝑍𝐴):𝑍⟶ℂ)
109ffvelrnda 6845 . . . . 5 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
115, 6, 7, 10isum 15070 . . . 4 (𝜑 → Σ𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴))))
124, 11syl5eqr 2870 . . 3 (𝜑 → Σ𝑘𝑍 𝐴 = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴))))
13 seqex 13365 . . . . . . 7 seq𝑀( + , (𝑘𝑍𝐴)) ∈ V
1413a1i 11 . . . . . 6 (𝜑 → seq𝑀( + , (𝑘𝑍𝐴)) ∈ V)
15 isumclim3.5 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
16 fzssuz 12942 . . . . . . . . . . . . . 14 (𝑀...𝑗) ⊆ (ℤ𝑀)
1716, 5sseqtrri 4003 . . . . . . . . . . . . 13 (𝑀...𝑗) ⊆ 𝑍
18 resmpt 5899 . . . . . . . . . . . . 13 ((𝑀...𝑗) ⊆ 𝑍 → ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴))
1917, 18ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)
2019fveq1i 6665 . . . . . . . . . . 11 (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
21 fvres 6683 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑗) → (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
2220, 21syl5reqr 2871 . . . . . . . . . 10 (𝑚 ∈ (𝑀...𝑗) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚))
2322sumeq2i 15050 . . . . . . . . 9 Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
24 sumfc 15060 . . . . . . . . 9 Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴
2523, 24eqtri 2844 . . . . . . . 8 Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴
26 eqidd 2822 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
27 simpr 487 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑍)
2827, 5eleqtrdi 2923 . . . . . . . . 9 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
29 simpl 485 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝜑)
30 elfzuz 12898 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑗) → 𝑚 ∈ (ℤ𝑀))
3130, 5eleqtrrdi 2924 . . . . . . . . . 10 (𝑚 ∈ (𝑀...𝑗) → 𝑚𝑍)
3229, 31, 10syl2an 597 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
3326, 28, 32fsumser 15081 . . . . . . . 8 ((𝜑𝑗𝑍) → Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = (seq𝑀( + , (𝑘𝑍𝐴))‘𝑗))
3425, 33syl5eqr 2870 . . . . . . 7 ((𝜑𝑗𝑍) → Σ𝑘 ∈ (𝑀...𝑗)𝐴 = (seq𝑀( + , (𝑘𝑍𝐴))‘𝑗))
3515, 34eqtr2d 2857 . . . . . 6 ((𝜑𝑗𝑍) → (seq𝑀( + , (𝑘𝑍𝐴))‘𝑗) = (𝐹𝑗))
365, 14, 1, 6, 35climeq 14918 . . . . 5 (𝜑 → (seq𝑀( + , (𝑘𝑍𝐴)) ⇝ 𝑥𝐹𝑥))
3736iotabidv 6333 . . . 4 (𝜑 → (℩𝑥seq𝑀( + , (𝑘𝑍𝐴)) ⇝ 𝑥) = (℩𝑥𝐹𝑥))
38 df-fv 6357 . . . 4 ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴))) = (℩𝑥seq𝑀( + , (𝑘𝑍𝐴)) ⇝ 𝑥)
39 df-fv 6357 . . . 4 ( ⇝ ‘𝐹) = (℩𝑥𝐹𝑥)
4037, 38, 393eqtr4g 2881 . . 3 (𝜑 → ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴))) = ( ⇝ ‘𝐹))
4112, 40eqtrd 2856 . 2 (𝜑 → Σ𝑘𝑍 𝐴 = ( ⇝ ‘𝐹))
423, 41breqtrrd 5086 1 (𝜑𝐹 ⇝ Σ𝑘𝑍 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  wss 3935   class class class wbr 5058  cmpt 5138  dom cdm 5549  cres 5551  cio 6306  cfv 6349  (class class class)co 7150  cc 10529   + caddc 10534  cz 11975  cuz 12237  ...cfz 12886  seqcseq 13363  cli 14835  Σcsu 15036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037
This theorem is referenced by:  esumcvg  31340
  Copyright terms: Public domain W3C validator