MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumless Structured version   Visualization version   GIF version

Theorem isumless 14365
Description: A finite sum of nonnegative numbers is less or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumless.1 𝑍 = (ℤ𝑀)
isumless.2 (𝜑𝑀 ∈ ℤ)
isumless.3 (𝜑𝐴 ∈ Fin)
isumless.4 (𝜑𝐴𝑍)
isumless.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
isumless.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
isumless.7 ((𝜑𝑘𝑍) → 0 ≤ 𝐵)
isumless.8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumless (𝜑 → Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝑍 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem isumless
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 isumless.4 . . 3 (𝜑𝐴𝑍)
21sselda 3567 . . . . 5 ((𝜑𝑘𝐴) → 𝑘𝑍)
3 isumless.6 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
43recnd 9925 . . . . 5 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
52, 4syldan 485 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
65ralrimiva 2948 . . 3 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
7 isumless.1 . . . . . 6 𝑍 = (ℤ𝑀)
87eqimssi 3621 . . . . 5 𝑍 ⊆ (ℤ𝑀)
98orci 403 . . . 4 (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin)
109a1i 11 . . 3 (𝜑 → (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin))
11 sumss2 14253 . . 3 (((𝐴𝑍 ∧ ∀𝑘𝐴 𝐵 ∈ ℂ) ∧ (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin)) → Σ𝑘𝐴 𝐵 = Σ𝑘𝑍 if(𝑘𝐴, 𝐵, 0))
121, 6, 10, 11syl21anc 1316 . 2 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝑍 if(𝑘𝐴, 𝐵, 0))
13 isumless.2 . . 3 (𝜑𝑀 ∈ ℤ)
14 eleq1 2675 . . . . . . 7 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
15 fveq2 6088 . . . . . . 7 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
1614, 15ifbieq1d 4058 . . . . . 6 (𝑗 = 𝑘 → if(𝑗𝐴, (𝐹𝑗), 0) = if(𝑘𝐴, (𝐹𝑘), 0))
17 eqid 2609 . . . . . 6 (𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0)) = (𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))
18 fvex 6098 . . . . . . 7 (𝐹𝑘) ∈ V
19 c0ex 9891 . . . . . . 7 0 ∈ V
2018, 19ifex 4105 . . . . . 6 if(𝑘𝐴, (𝐹𝑘), 0) ∈ V
2116, 17, 20fvmpt 6176 . . . . 5 (𝑘𝑍 → ((𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))‘𝑘) = if(𝑘𝐴, (𝐹𝑘), 0))
2221adantl 480 . . . 4 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))‘𝑘) = if(𝑘𝐴, (𝐹𝑘), 0))
23 isumless.5 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
2423ifeq1d 4053 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐴, (𝐹𝑘), 0) = if(𝑘𝐴, 𝐵, 0))
2522, 24eqtrd 2643 . . 3 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))‘𝑘) = if(𝑘𝐴, 𝐵, 0))
26 0re 9897 . . . 4 0 ∈ ℝ
27 ifcl 4079 . . . 4 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑘𝐴, 𝐵, 0) ∈ ℝ)
283, 26, 27sylancl 692 . . 3 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐵, 0) ∈ ℝ)
29 isumless.7 . . . 4 ((𝜑𝑘𝑍) → 0 ≤ 𝐵)
30 leid 9985 . . . . 5 (𝐵 ∈ ℝ → 𝐵𝐵)
31 breq1 4580 . . . . . 6 (𝐵 = if(𝑘𝐴, 𝐵, 0) → (𝐵𝐵 ↔ if(𝑘𝐴, 𝐵, 0) ≤ 𝐵))
32 breq1 4580 . . . . . 6 (0 = if(𝑘𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ if(𝑘𝐴, 𝐵, 0) ≤ 𝐵))
3331, 32ifboth 4073 . . . . 5 ((𝐵𝐵 ∧ 0 ≤ 𝐵) → if(𝑘𝐴, 𝐵, 0) ≤ 𝐵)
3430, 33sylan 486 . . . 4 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → if(𝑘𝐴, 𝐵, 0) ≤ 𝐵)
353, 29, 34syl2anc 690 . . 3 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐵, 0) ≤ 𝐵)
36 isumless.3 . . . 4 (𝜑𝐴 ∈ Fin)
377, 13, 36, 1, 25, 5fsumcvg3 14256 . . 3 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))) ∈ dom ⇝ )
38 isumless.8 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
397, 13, 25, 28, 23, 3, 35, 37, 38isumle 14364 . 2 (𝜑 → Σ𝑘𝑍 if(𝑘𝐴, 𝐵, 0) ≤ Σ𝑘𝑍 𝐵)
4012, 39eqbrtrd 4599 1 (𝜑 → Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝑍 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 381  wa 382   = wceq 1474  wcel 1976  wral 2895  wss 3539  ifcif 4035   class class class wbr 4577  cmpt 4637  dom cdm 5028  cfv 5790  Fincfn 7819  cc 9791  cr 9792  0cc0 9793   + caddc 9796  cle 9932  cz 11213  cuz 11522  seqcseq 12621  cli 14012  Σcsu 14213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-pm 7725  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-n0 11143  df-z 11214  df-uz 11523  df-rp 11668  df-fz 12156  df-fzo 12293  df-fl 12413  df-seq 12622  df-exp 12681  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-clim 14016  df-rlim 14017  df-sum 14214
This theorem is referenced by:  isumltss  14368  climcnds  14371  harmonic  14379  mertenslem1  14404  prmreclem5  15411  ovoliunlem1  23022  ovoliun2  23026  esumpcvgval  29301  eulerpartlems  29583  geomcau  32549
  Copyright terms: Public domain W3C validator