MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumnn0nn Structured version   Visualization version   GIF version

Theorem isumnn0nn 15199
Description: Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumnn0nn.1 (𝑘 = 0 → 𝐴 = 𝐵)
isumnn0nn.2 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = 𝐴)
isumnn0nn.3 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
isumnn0nn.4 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumnn0nn (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = (𝐵 + Σ𝑘 ∈ ℕ 𝐴))
Distinct variable groups:   𝑘,𝐹   𝐵,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isumnn0nn
StepHypRef Expression
1 nn0uz 12283 . . 3 0 = (ℤ‘0)
2 0zd 11996 . . 3 (𝜑 → 0 ∈ ℤ)
3 isumnn0nn.2 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = 𝐴)
4 isumnn0nn.3 . . 3 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
5 isumnn0nn.4 . . 3 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
61, 2, 3, 4, 5isum1p 15198 . 2 (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = ((𝐹‘0) + Σ𝑘 ∈ (ℤ‘(0 + 1))𝐴))
7 fveq2 6672 . . . . 5 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
8 isumnn0nn.1 . . . . 5 (𝑘 = 0 → 𝐴 = 𝐵)
97, 8eqeq12d 2839 . . . 4 (𝑘 = 0 → ((𝐹𝑘) = 𝐴 ↔ (𝐹‘0) = 𝐵))
103ralrimiva 3184 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ0 (𝐹𝑘) = 𝐴)
11 0nn0 11915 . . . . 5 0 ∈ ℕ0
1211a1i 11 . . . 4 (𝜑 → 0 ∈ ℕ0)
139, 10, 12rspcdva 3627 . . 3 (𝜑 → (𝐹‘0) = 𝐵)
14 0p1e1 11762 . . . . . . 7 (0 + 1) = 1
1514fveq2i 6675 . . . . . 6 (ℤ‘(0 + 1)) = (ℤ‘1)
16 nnuz 12284 . . . . . 6 ℕ = (ℤ‘1)
1715, 16eqtr4i 2849 . . . . 5 (ℤ‘(0 + 1)) = ℕ
1817sumeq1i 15057 . . . 4 Σ𝑘 ∈ (ℤ‘(0 + 1))𝐴 = Σ𝑘 ∈ ℕ 𝐴
1918a1i 11 . . 3 (𝜑 → Σ𝑘 ∈ (ℤ‘(0 + 1))𝐴 = Σ𝑘 ∈ ℕ 𝐴)
2013, 19oveq12d 7176 . 2 (𝜑 → ((𝐹‘0) + Σ𝑘 ∈ (ℤ‘(0 + 1))𝐴) = (𝐵 + Σ𝑘 ∈ ℕ 𝐴))
216, 20eqtrd 2858 1 (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = (𝐵 + Σ𝑘 ∈ ℕ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  dom cdm 5557  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540   + caddc 10542  cn 11640  0cn0 11900  cuz 12246  seqcseq 13372  cli 14843  Σcsu 15044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator