Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumrpcl Structured version   Visualization version   GIF version

Theorem isumrpcl 14619
 Description: The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumrpcl.1 𝑍 = (ℤ𝑀)
isumrpcl.2 𝑊 = (ℤ𝑁)
isumrpcl.3 (𝜑𝑁𝑍)
isumrpcl.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumrpcl.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ+)
isumrpcl.6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumrpcl (𝜑 → Σ𝑘𝑊 𝐴 ∈ ℝ+)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isumrpcl
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 isumrpcl.2 . . 3 𝑊 = (ℤ𝑁)
2 isumrpcl.3 . . . . 5 (𝜑𝑁𝑍)
3 isumrpcl.1 . . . . 5 𝑍 = (ℤ𝑀)
42, 3syl6eleq 2740 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzelz 11735 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
64, 5syl 17 . . 3 (𝜑𝑁 ∈ ℤ)
7 uzss 11746 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
84, 7syl 17 . . . . . 6 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
98, 1, 33sstr4g 3679 . . . . 5 (𝜑𝑊𝑍)
109sselda 3636 . . . 4 ((𝜑𝑘𝑊) → 𝑘𝑍)
11 isumrpcl.4 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
1210, 11syldan 486 . . 3 ((𝜑𝑘𝑊) → (𝐹𝑘) = 𝐴)
13 isumrpcl.5 . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ+)
1413rpred 11910 . . . 4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
1510, 14syldan 486 . . 3 ((𝜑𝑘𝑊) → 𝐴 ∈ ℝ)
16 isumrpcl.6 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
1711, 13eqeltrd 2730 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ+)
1817rpcnd 11912 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
193, 2, 18iserex 14431 . . . 4 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
2016, 19mpbid 222 . . 3 (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ )
211, 6, 12, 15, 20isumrecl 14540 . 2 (𝜑 → Σ𝑘𝑊 𝐴 ∈ ℝ)
2217ralrimiva 2995 . . 3 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℝ+)
23 fveq2 6229 . . . . 5 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
2423eleq1d 2715 . . . 4 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ+ ↔ (𝐹𝑁) ∈ ℝ+))
2524rspcv 3336 . . 3 (𝑁𝑍 → (∀𝑘𝑍 (𝐹𝑘) ∈ ℝ+ → (𝐹𝑁) ∈ ℝ+))
262, 22, 25sylc 65 . 2 (𝜑 → (𝐹𝑁) ∈ ℝ+)
27 seq1 12854 . . . 4 (𝑁 ∈ ℤ → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹𝑁))
286, 27syl 17 . . 3 (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹𝑁))
29 uzid 11740 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
306, 29syl 17 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑁))
3130, 1syl6eleqr 2741 . . . 4 (𝜑𝑁𝑊)
3215recnd 10106 . . . . 5 ((𝜑𝑘𝑊) → 𝐴 ∈ ℂ)
331, 6, 12, 32, 20isumclim2 14533 . . . 4 (𝜑 → seq𝑁( + , 𝐹) ⇝ Σ𝑘𝑊 𝐴)
349sseld 3635 . . . . . . 7 (𝜑 → (𝑚𝑊𝑚𝑍))
35 fveq2 6229 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
3635eleq1d 2715 . . . . . . . 8 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℝ+ ↔ (𝐹𝑚) ∈ ℝ+))
3736rspcv 3336 . . . . . . 7 (𝑚𝑍 → (∀𝑘𝑍 (𝐹𝑘) ∈ ℝ+ → (𝐹𝑚) ∈ ℝ+))
3834, 22, 37syl6ci 71 . . . . . 6 (𝜑 → (𝑚𝑊 → (𝐹𝑚) ∈ ℝ+))
3938imp 444 . . . . 5 ((𝜑𝑚𝑊) → (𝐹𝑚) ∈ ℝ+)
4039rpred 11910 . . . 4 ((𝜑𝑚𝑊) → (𝐹𝑚) ∈ ℝ)
4139rpge0d 11914 . . . 4 ((𝜑𝑚𝑊) → 0 ≤ (𝐹𝑚))
421, 31, 33, 40, 41climserle 14437 . . 3 (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) ≤ Σ𝑘𝑊 𝐴)
4328, 42eqbrtrrd 4709 . 2 (𝜑 → (𝐹𝑁) ≤ Σ𝑘𝑊 𝐴)
4421, 26, 43rpgecld 11949 1 (𝜑 → Σ𝑘𝑊 𝐴 ∈ ℝ+)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941   ⊆ wss 3607  dom cdm 5143  ‘cfv 5926  ℝcr 9973   + caddc 9977   ≤ cle 10113  ℤcz 11415  ℤ≥cuz 11725  ℝ+crp 11870  seqcseq 12841   ⇝ cli 14259  Σcsu 14460 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461 This theorem is referenced by:  effsumlt  14885  eirrlem  14976  aaliou3lem3  24144
 Copyright terms: Public domain W3C validator