MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumsplit Structured version   Visualization version   GIF version

Theorem isumsplit 14353
Description: Split off the first 𝑁 terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumsplit.1 𝑍 = (ℤ𝑀)
isumsplit.2 𝑊 = (ℤ𝑁)
isumsplit.3 (𝜑𝑁𝑍)
isumsplit.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumsplit.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumsplit.6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumsplit (𝜑 → Σ𝑘𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘𝑊 𝐴))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝑘,𝑁   𝑘,𝑊
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isumsplit
Dummy variables 𝑗 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumsplit.1 . 2 𝑍 = (ℤ𝑀)
2 isumsplit.3 . . . 4 (𝜑𝑁𝑍)
32, 1syl6eleq 2693 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzel2 11520 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
53, 4syl 17 . 2 (𝜑𝑀 ∈ ℤ)
6 isumsplit.4 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
7 isumsplit.5 . 2 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
8 isumsplit.2 . . 3 𝑊 = (ℤ𝑁)
9 eluzelz 11525 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
103, 9syl 17 . . 3 (𝜑𝑁 ∈ ℤ)
11 uzss 11536 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
123, 11syl 17 . . . . . . 7 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
1312, 8, 13sstr4g 3604 . . . . . 6 (𝜑𝑊𝑍)
1413sselda 3563 . . . . 5 ((𝜑𝑘𝑊) → 𝑘𝑍)
1514, 6syldan 485 . . . 4 ((𝜑𝑘𝑊) → (𝐹𝑘) = 𝐴)
1614, 7syldan 485 . . . 4 ((𝜑𝑘𝑊) → 𝐴 ∈ ℂ)
17 isumsplit.6 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
186, 7eqeltrd 2683 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
191, 2, 18iserex 14177 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
2017, 19mpbid 220 . . . 4 (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ )
218, 10, 15, 16, 20isumclim2 14273 . . 3 (𝜑 → seq𝑁( + , 𝐹) ⇝ Σ𝑘𝑊 𝐴)
22 fzfid 12585 . . . 4 (𝜑 → (𝑀...(𝑁 − 1)) ∈ Fin)
23 elfzuz 12160 . . . . . 6 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ𝑀))
2423, 1syl6eleqr 2694 . . . . 5 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘𝑍)
2524, 7sylan2 489 . . . 4 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ)
2622, 25fsumcl 14253 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 ∈ ℂ)
2714, 18syldan 485 . . . . 5 ((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
288, 10, 27serf 12642 . . . 4 (𝜑 → seq𝑁( + , 𝐹):𝑊⟶ℂ)
2928ffvelrnda 6248 . . 3 ((𝜑𝑗𝑊) → (seq𝑁( + , 𝐹)‘𝑗) ∈ ℂ)
305zred 11310 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℝ)
3130ltm1d 10801 . . . . . . . . . . 11 (𝜑 → (𝑀 − 1) < 𝑀)
32 peano2zm 11249 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
335, 32syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑀 − 1) ∈ ℤ)
34 fzn 12179 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
355, 33, 34syl2anc 690 . . . . . . . . . . 11 (𝜑 → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
3631, 35mpbid 220 . . . . . . . . . 10 (𝜑 → (𝑀...(𝑀 − 1)) = ∅)
3736sumeq1d 14221 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 = Σ𝑘 ∈ ∅ 𝐴)
3837adantr 479 . . . . . . . 8 ((𝜑𝑗𝑊) → Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 = Σ𝑘 ∈ ∅ 𝐴)
39 sum0 14241 . . . . . . . 8 Σ𝑘 ∈ ∅ 𝐴 = 0
4038, 39syl6eq 2655 . . . . . . 7 ((𝜑𝑗𝑊) → Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 = 0)
4140oveq1d 6538 . . . . . 6 ((𝜑𝑗𝑊) → (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗)) = (0 + (seq𝑀( + , 𝐹)‘𝑗)))
4213sselda 3563 . . . . . . . 8 ((𝜑𝑗𝑊) → 𝑗𝑍)
431, 5, 18serf 12642 . . . . . . . . 9 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
4443ffvelrnda 6248 . . . . . . . 8 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
4542, 44syldan 485 . . . . . . 7 ((𝜑𝑗𝑊) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
4645addid2d 10084 . . . . . 6 ((𝜑𝑗𝑊) → (0 + (seq𝑀( + , 𝐹)‘𝑗)) = (seq𝑀( + , 𝐹)‘𝑗))
4741, 46eqtr2d 2640 . . . . 5 ((𝜑𝑗𝑊) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗)))
48 oveq1 6530 . . . . . . . . 9 (𝑁 = 𝑀 → (𝑁 − 1) = (𝑀 − 1))
4948oveq2d 6539 . . . . . . . 8 (𝑁 = 𝑀 → (𝑀...(𝑁 − 1)) = (𝑀...(𝑀 − 1)))
5049sumeq1d 14221 . . . . . . 7 (𝑁 = 𝑀 → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 = Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴)
51 seqeq1 12617 . . . . . . . 8 (𝑁 = 𝑀 → seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹))
5251fveq1d 6086 . . . . . . 7 (𝑁 = 𝑀 → (seq𝑁( + , 𝐹)‘𝑗) = (seq𝑀( + , 𝐹)‘𝑗))
5350, 52oveq12d 6541 . . . . . 6 (𝑁 = 𝑀 → (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)) = (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗)))
5453eqeq2d 2615 . . . . 5 (𝑁 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)) ↔ (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗))))
5547, 54syl5ibrcom 235 . . . 4 ((𝜑𝑗𝑊) → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗))))
56 addcl 9870 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑘 + 𝑚) ∈ ℂ)
5756adantl 480 . . . . . . 7 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝑘 + 𝑚) ∈ ℂ)
58 addass 9875 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 𝑚) + 𝑥) = (𝑘 + (𝑚 + 𝑥)))
5958adantl 480 . . . . . . 7 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑘 + 𝑚) + 𝑥) = (𝑘 + (𝑚 + 𝑥)))
60 simplr 787 . . . . . . . 8 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑗𝑊)
61 simpll 785 . . . . . . . . . . 11 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝜑)
6210zcnd 11311 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
63 ax-1cn 9846 . . . . . . . . . . . . 13 1 ∈ ℂ
64 npcan 10137 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
6562, 63, 64sylancl 692 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
6665eqcomd 2611 . . . . . . . . . . 11 (𝜑𝑁 = ((𝑁 − 1) + 1))
6761, 66syl 17 . . . . . . . . . 10 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 = ((𝑁 − 1) + 1))
6867fveq2d 6088 . . . . . . . . 9 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (ℤ𝑁) = (ℤ‘((𝑁 − 1) + 1)))
698, 68syl5eq 2651 . . . . . . . 8 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑊 = (ℤ‘((𝑁 − 1) + 1)))
7060, 69eleqtrd 2685 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑗 ∈ (ℤ‘((𝑁 − 1) + 1)))
715adantr 479 . . . . . . . 8 ((𝜑𝑗𝑊) → 𝑀 ∈ ℤ)
72 eluzp1m1 11539 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
7371, 72sylan 486 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
74 elfzuz 12160 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
7574, 1syl6eleqr 2694 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
7661, 75, 18syl2an 492 . . . . . . 7 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
7757, 59, 70, 73, 76seqsplit 12647 . . . . . 6 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (seq((𝑁 − 1) + 1)( + , 𝐹)‘𝑗)))
7861, 24, 6syl2an 492 . . . . . . . 8 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) = 𝐴)
7961, 24, 7syl2an 492 . . . . . . . 8 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ)
8078, 73, 79fsumser 14250 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 = (seq𝑀( + , 𝐹)‘(𝑁 − 1)))
8167seqeq1d 12620 . . . . . . . 8 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → seq𝑁( + , 𝐹) = seq((𝑁 − 1) + 1)( + , 𝐹))
8281fveq1d 6086 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑁( + , 𝐹)‘𝑗) = (seq((𝑁 − 1) + 1)( + , 𝐹)‘𝑗))
8380, 82oveq12d 6541 . . . . . 6 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (seq((𝑁 − 1) + 1)( + , 𝐹)‘𝑗)))
8477, 83eqtr4d 2642 . . . . 5 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)))
8584ex 448 . . . 4 ((𝜑𝑗𝑊) → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗))))
86 uzp1 11549 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
873, 86syl 17 . . . . 5 (𝜑 → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
8887adantr 479 . . . 4 ((𝜑𝑗𝑊) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
8955, 85, 88mpjaod 394 . . 3 ((𝜑𝑗𝑊) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)))
908, 10, 21, 26, 17, 29, 89climaddc2 14156 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘𝑊 𝐴))
911, 5, 6, 7, 90isumclim 14272 1 (𝜑 → Σ𝑘𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘𝑊 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1975  wss 3535  c0 3869   class class class wbr 4573  dom cdm 5024  cfv 5786  (class class class)co 6523  cc 9786  0cc0 9788  1c1 9789   + caddc 9791   < clt 9926  cmin 10113  cz 11206  cuz 11515  ...cfz 12148  seqcseq 12614  cli 14005  Σcsu 14206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-sup 8204  df-oi 8271  df-card 8621  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-n0 11136  df-z 11207  df-uz 11516  df-rp 11661  df-fz 12149  df-fzo 12286  df-seq 12615  df-exp 12674  df-hash 12931  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-clim 14009  df-sum 14207
This theorem is referenced by:  isum1p  14354  geolim2  14383  mertenslem2  14398  mertens  14399  effsumlt  14622  eirrlem  14713  rpnnen2lem8  14731  prmreclem6  15405  aaliou3lem7  23821  abelthlem7  23909  log2tlbnd  24385  subfaclim  30226  knoppndvlem6  31480  binomcxplemnn0  37369  stirlinglem12  38778
  Copyright terms: Public domain W3C validator