MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuspgr Structured version   Visualization version   GIF version

Theorem isuspgr 26246
Description: The property of being a simple pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.)
Hypotheses
Ref Expression
isuspgr.v 𝑉 = (Vtx‘𝐺)
isuspgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isuspgr (𝐺𝑈 → (𝐺 ∈ USPGraph ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hints:   𝑈(𝑥)   𝐸(𝑥)

Proof of Theorem isuspgr
Dummy variables 𝑒 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-uspgr 26244 . . 3 USPGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}}
21eleq2i 2831 . 2 (𝐺 ∈ USPGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}})
3 fveq2 6352 . . . . 5 ( = 𝐺 → (iEdg‘) = (iEdg‘𝐺))
4 isuspgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
53, 4syl6eqr 2812 . . . 4 ( = 𝐺 → (iEdg‘) = 𝐸)
63dmeqd 5481 . . . . 5 ( = 𝐺 → dom (iEdg‘) = dom (iEdg‘𝐺))
74eqcomi 2769 . . . . . 6 (iEdg‘𝐺) = 𝐸
87dmeqi 5480 . . . . 5 dom (iEdg‘𝐺) = dom 𝐸
96, 8syl6eq 2810 . . . 4 ( = 𝐺 → dom (iEdg‘) = dom 𝐸)
10 fveq2 6352 . . . . . . . 8 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
11 isuspgr.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
1210, 11syl6eqr 2812 . . . . . . 7 ( = 𝐺 → (Vtx‘) = 𝑉)
1312pweqd 4307 . . . . . 6 ( = 𝐺 → 𝒫 (Vtx‘) = 𝒫 𝑉)
1413difeq1d 3870 . . . . 5 ( = 𝐺 → (𝒫 (Vtx‘) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
1514rabeqdv 3334 . . . 4 ( = 𝐺 → {𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
165, 9, 15f1eq123d 6292 . . 3 ( = 𝐺 → ((iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
17 fvexd 6364 . . . . 5 (𝑔 = → (Vtx‘𝑔) ∈ V)
18 fveq2 6352 . . . . 5 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
19 fvexd 6364 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) ∈ V)
20 fveq2 6352 . . . . . . 7 (𝑔 = → (iEdg‘𝑔) = (iEdg‘))
2120adantr 472 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) = (iEdg‘))
22 simpr 479 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝑒 = (iEdg‘))
2322dmeqd 5481 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → dom 𝑒 = dom (iEdg‘))
24 pweq 4305 . . . . . . . . . 10 (𝑣 = (Vtx‘) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2524ad2antlr 765 . . . . . . . . 9 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2625difeq1d 3870 . . . . . . . 8 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝒫 𝑣 ∖ {∅}) = (𝒫 (Vtx‘) ∖ {∅}))
2726rabeqdv 3334 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
2822, 23, 27f1eq123d 6292 . . . . . 6 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
2919, 21, 28sbcied2 3614 . . . . 5 ((𝑔 = 𝑣 = (Vtx‘)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
3017, 18, 29sbcied2 3614 . . . 4 (𝑔 = → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
3130cbvabv 2885 . . 3 {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}} = { ∣ (iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}}
3216, 31elab2g 3493 . 2 (𝐺𝑈 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
332, 32syl5bb 272 1 (𝐺𝑈 → (𝐺 ∈ USPGraph ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  {cab 2746  {crab 3054  Vcvv 3340  [wsbc 3576  cdif 3712  c0 4058  𝒫 cpw 4302  {csn 4321   class class class wbr 4804  dom cdm 5266  1-1wf1 6046  cfv 6049  cle 10267  2c2 11262  chash 13311  Vtxcvtx 26073  iEdgciedg 26074  USPGraphcuspgr 26242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-nul 4941
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fv 6057  df-uspgr 26244
This theorem is referenced by:  uspgrf  26248  isuspgrop  26255  uspgrushgr  26269  uspgrupgr  26270  uspgrupgrushgr  26271  usgruspgr  26272  uspgr1e  26335
  Copyright terms: Public domain W3C validator